C/C++ dijkstra最短距离算法详解及源码

本文详细介绍了Dijkstra最短距离算法,包括算法原理、步骤及其实现。通过C语言展示了算法的代码示例,并指出在实现过程中需要注意的事项,如避免负权边和正确管理访问状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dijkstra最短距离算法是一种在有向图或带权有向图中找到从起始点到其他所有点最短路径的算法。它的基本原理是,通过不断选择当前最短路径的顶点,逐步确定起始点到其他顶点的最短路径。

具体步骤如下:

  1. 初始化:将起始点的最短路径设置为0,将其他点的最短路径设置为无穷大。
  2. 选择当前最短路径的顶点:从未处理的顶点中选择一个顶点,其到起始点的最短路径为当前最小值,并将该顶点标记为已处理。
  3. 更新最短路径:遍历该顶点的邻接顶点,更新邻接顶点的最短路径,如果通过当前顶点可以获得更短的路径,则更新邻接顶点的最短路径。
  4. 重复步骤2和步骤3,直到所有的顶点都被处理。

优点:

  1. Dijkstra算法可以找到起始点到其他所有点的最短路径,准确性高。
  2. 对于有向图和带权有向图,Dijkstra算法的复杂度为O(|V|^2),在稠密图中表现良好。
  3. 算法实现简单,易于理解和调试。

缺点:

  1. 当图非常大时,Dijkstra算法的时间复杂度较高,不适合处理大规模的图。
  2. 对于带负权边的图,Dijkstra算法不适用。

以下是使用C语言实现Dijkstra最短距离算法的示例代码:

注意事项:

  1. 在实现Dijkstra算法时,需要使用一个数组来保存起始点到其他点的最短路径。
  2. 边的权值可以用二维数组表示,也可以用链表等数据结构表示,具体根据实际情况来选择。
  3. 在实现过程中,需要注意对访问状态的标记,以避免重复处理或者死循环的情
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值