C/C++ warshall算法求传递闭包transitive closure算法详解及源码

Warshall算法,也称为Floyd-Warshall算法,是一种用于求解图的传递闭包的算法。传递闭包是指对于有向图中的每对顶点,如果存在一条路径从顶点i到顶点j,则认为顶点i到顶点j之间存在传递关系。

Warshall算法的核心思想是通过动态规划的方式逐步构建传递闭包。算法的基本步骤如下:

  1. 创建一个二维矩阵T,T[i][j]表示顶点i到顶点j是否存在一条路径。
  2. 初始化矩阵T,对于有边相连的两个顶点i和j,T[i][j]标记为1,否则标记为0。
  3. 对于每一个顶点k,遍历矩阵T,如果T[i][k]和T[k][j]都为1,则标记T[i][j]为1。

Warshall算法的时间复杂度为O(n^3),其中n是顶点的数量。它适用于解决有向图中传递闭包的问题。

优点:

  1. 算法简单且易于理解。
  2. 算法的时间复杂度较低,适用于中等规模的图。

缺点:

  1. 空间复杂度较高,需要额外的二维矩阵存储传递闭包的信息。
  2. 对于大规模的图,算法的执行时间较长。

以下是使用C++实现Warshall算法求传递闭包的示例代码:

#include &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值