6. 泛化能力
泛化能力指的是通过某一学习方法学习所得到的模型对未知数据的预测能力。
在现实生活中,我们经常通过测试数据集来评价某一学习方法的泛化能力,但是测试数据集里包含的样本是有限的,所以仅仅用测试数据集去评价学习方法(模型)的泛化能力,有的时候并不可靠,这时候我们就要从理论出发,对学习方法的泛化能力进行一个评价。此时,我们是基于整个样本空间的。
6.1 泛化误差
如果统计学习方法学习到的模型是f^\hat{f}f^,那么这个模型对未知数据预测的误差即为泛化误差(Generalization Error):
Rexp(f^)=EP[L(Y,f^(X))]=∫X×YL(y,f^(x))P(x,y)dxdy\begin{aligned} R_{\exp }(\hat{f}) & =E_{P}[L(Y, \hat{f}(X))] \\ & =\int_{\mathcal{X} \times \mathcal{Y}} L(y, \hat{f}(x)) P(x, y) d x d y \end{aligned}Rexp(f^)=EP[L(Y,f^(X))]=∫X×YL(y,f^(x))P(x,y)dxdy
这个式子是损失函数的期望值。我们考察的模型是f^\hat{f}f^,所求的积分是在全样本空间上进行的,所以称为泛化误差。
如果现在有两种学习方法,学习方法a所得到的模型具有比学习方法b所得到的模型的泛化误差小,那么这时候学习方法a就会更有效果,这就是通过泛化误差来反映学习方法的泛化能力。
6.2 泛化误差上界
泛化误差上界(Generalization Error Bound):指泛化误差的概率上界。在理论上对比两种学习方法的优劣的时候,通常通过他们的泛化误差上界进行比较。
性质:
- 样本容量的函数:当样本容量NNN增加时,泛化上界趋于0,因为泛化误差它定义为一个期望值,那么经验表达应该就是一个平均值,随着NNN的增加,这个平均值是趋于0的;
- 假设空间容量的函数:假设空间(所有可能的模型)容量越大,模型就越难学,泛化误差上界就越大。
单纯看这两条性质难以理解,后面二分类问题会再次讨论。
【注1】随机过程
随机过程(Stochastic Process)是指一个随着时间变化而发生的随机现象的集合。简而言之,随机过程描述了一个系统或现象的行为随时间演化,并且在每个时刻的状态都是不确定的,具有某种随机性。随机过程在许多领域中都有重要应用,特别是在物理学、金融学、工程学、经济学等领域。
- 随机过程的定义
从数学角度来看,随机过程是一个定义在概率空间上的随机变量族。具体来说,随机过程可以用一个索引集(通常是时间)来表示,其中每个时间点上的随机变量表示过程在该时刻的状态。假设我们有一个时间参数ttt和一个状态空间SSS,那么一个随机过程可以表示为X(t)X(t)X(t),其中ttt通常表示时间,X(t)X(t)X(t)是与ttt对应的随机变量,取值范围是状态空间SSS.- 形式化表达
如果TTT是一个时间集(比如T=RT=\mathbb{R}T=R或T=ZT=\mathbb{Z}T=Z,表示连续时间或离散时间),状态空间SSS是一个集合,那么一个随机过程是一个映射:
X:T×Ω→SX: T \times \Omega \rightarrow SX:T×Ω→S
其中Ω\OmegaΩ是概率空间,TTT是时间参数,SSS是该过程可能的状态空间。- 总结
随机过程是描述随时间变化的随机现象的数学模型,它通过随机变量的集合来表示系统的状态随时间的演化。随机过程在实际应用中无处不在,从金融市场到物理学,再到机器学习中的不确定性建模,它都发挥着重要的作用。通过深入研究随机过程,我们可以更好地理解复杂的动态系统并做出相应的决策。【注2】概率上界
概率上界(Probabilistic Upper Bound)是概率论中的一个概念,用来表示某个随机变量或事件在给定概率范围内的最大可能值或某些统计量的上限。换句话说,概率上界描述了一个随机变量或随机过程的某种极端情况的上限值,并给出了这个极端事件发生的概率。
在许多应用中,我们关心的是一个随机变量超出某个特定值的概率(比如大于某个阈值的概率)。概率上界则给出了这样一个概率的上限,它告诉我们在最坏的情况下,某个随机变量或事件发生的概率不会超过这个上限。
- 概率上界的应用
概率上界在统计学、机器学习、算法分析和其他很多领域都有应用。下面是一些常见的应用场景:
- 大数法则和中心极限定理中的上界:在这些定理中,我们经常希望能够给出某些统计量(如样本均值)偏离其期望值的概率上界。
- 算法分析:在分析算法的时间复杂度或空间复杂度时,常常希望能给出某些事件(例如最坏情况下算法的运行时间)发生的概率上界。
- 随机过程:在随机过程的分析中,概率上界帮助我们评估某个过程偏离某个期望状态的可能性。
- 常见的概率上界的例子
- 切比雪夫不等式
切比雪夫不等式是一个常见的概率上界工具,它提供了一个随机变量偏离其期望值的概率的上限。具体来说,假设XXX是一个具有期望值μ\muμ和方差σ2\sigma ^2σ2的随机变量,那么对于任意k>0k>0k>0,切比雪夫不等式给出了以下的上界:
P(∣X−μ∣≥kσ)≤1k2P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}P(∣X−μ∣≥kσ)≤k21
这意味着,随机变量XXX偏离其期望值μ\muμ的概率不会超过1k2\frac{1}{k^2}k2