From: "headius (Charles Nutter)" Date: 2012-11-14T05:38:12+09:00 Subject: [ruby-core:49320] [ruby-trunk - Feature #4085] Refinements and nested methods Issue #4085 has been updated by headius (Charles Nutter). rosenfeld: Yes, I am arguing that same case. I believe refinements should only be active for code that appears within a refined context. My example from earlier: class Foo < SomeParent def bar(str) str.upcase # unrefined end using StringRefinement def baz(str) str.camlize # refined end end end There are implementation reasons why this is simpler, but the more important reasons are readability, understandability of the code. You know exactly whose methods will be called in both cases -- String's in the bar() body and StringRefinement's or String's in the baz() body -- and there's no question whether refinements are active for a given call. Compare that to the following code: class Foo < SomeParent def bar(str) str.upcase end def baz(str) str.camelize end end What methods are being called? Where are they coming from? You can't know, since you need more information that the type of object that str is. You need to know whether Foo has previously had refinements applied, whether SomeParent previously had refinements applied, whether its parents previously had refinements applied...you need to know what those refinements are and whether they affect String methods...and you need to know whether any of the methods you are calling have been refined. EVERY PIECE OF CODE in a given system now forces users to understand BOTH the target class being called AND the hierarchy of code surrounding the call. That's not simpler, it's more complicated...and it affects the readability of ALL CODE. And then there's this: class Foo < SomeParent def baz(str) ary.map {|name| str.camelize + name} end end In this case, you have to check even more places for refinements to know what methods will be called: * Foo may have been previously refined. You must look for all reopenings of Foo to know what will be called. * SomeParent or its parents may have been previously refined. You must look for all reopenings of SomeParent and its parents. * The map method may force refinements on the block. you must look for all implementations of map() that might be called here to see if they force refinements into the block. This is supposed to be simpler? ---------------------------------------- Feature #4085: Refinements and nested methods https://bugs.ruby-lang.org/issues/4085#change-32879 Author: shugo (Shugo Maeda) Status: Assigned Priority: Normal Assignee: shugo (Shugo Maeda) Category: core Target version: 2.0.0 =begin As I said at RubyConf 2010, I'd like to propose a new features called "Refinements." Refinements are similar to Classboxes. However, Refinements doesn't support local rebinding as mentioned later. In this sense, Refinements might be more similar to selector namespaces, but I'm not sure because I have never seen any implementation of selector namespaces. In Refinements, a Ruby module is used as a namespace (or classbox) for class extensions. Such class extensions are called refinements. For example, the following module refines Fixnum. module MathN refine Fixnum do def /(other) quo(other) end end end Module#refine(klass) takes one argument, which is a class to be extended. Module#refine also takes a block, where additional or overriding methods of klass can be defined. In this example, MathN refines Fixnum so that 1 / 2 returns a rational number (1/2) instead of an integer 0. This refinement can be enabled by the method using. class Foo using MathN def foo p 1 / 2 end end f = Foo.new f.foo #=> (1/2) p 1 / 2 In this example, the refinement in MathN is enabled in the definition of Foo. The effective scope of the refinement is the innermost class, module, or method where using is called; however the refinement is not enabled before the call of using. If there is no such class, module, or method, then the effective scope is the file where using is called. Note that refinements are pseudo-lexically scoped. For example, foo.baz prints not "FooExt#bar" but "Foo#bar" in the following code: class Foo def bar puts "Foo#bar" end def baz bar end end module FooExt refine Foo do def bar puts "FooExt#bar" end end end module Quux using FooExt foo = Foo.new foo.bar # => FooExt#bar foo.baz # => Foo#bar end Refinements are also enabled in reopened definitions of classes using refinements and definitions of their subclasses, so they are *pseudo*-lexically scoped. class Foo using MathN end class Foo # MathN is enabled in a reopened definition. p 1 / 2 #=> (1/2) end class Bar < Foo # MathN is enabled in a subclass definition. p 1 / 2 #=> (1/2) end If a module or class is using refinements, they are enabled in module_eval, class_eval, and instance_eval if the receiver is the class or module, or an instance of the class. module A using MathN end class B using MathN end MathN.module_eval do p 1 / 2 #=> (1/2) end A.module_eval do p 1 / 2 #=> (1/2) end B.class_eval do p 1 / 2 #=> (1/2) end B.new.instance_eval do p 1 / 2 #=> (1/2) end Besides refinements, I'd like to propose new behavior of nested methods. Currently, the scope of a nested method is not closed in the outer method. def foo def bar puts "bar" end bar end foo #=> bar bar #=> bar In Ruby, there are no functions, but only methods. So there are no right places where nested methods are defined. However, if refinements are introduced, a refinement enabled only in the outer method would be the right place. For example, the above code is almost equivalent to the following code: def foo klass = self.class m = Module.new { refine klass do def bar puts "bar" end end } using m bar end foo #=> bar bar #=> NoMethodError The attached patch is based on SVN trunk r29837. =end -- http://bugs.ruby-lang.org/