互联网大厂Java面试实录:从基础到微服务的灵魂拷问
场景:互联网大厂Java求职面试
面试官:严肃的技术大佬
求职者:谢飞机(搞笑水货程序员)
第一轮:基础与语言特性
面试官:谢飞机,先简单介绍一下你对Java 8新特性的理解吧。
谢飞机:啊?Lambda表达式?就是那个箭头->的东西吧,写起来挺酷的!(挠头)
面试官(微笑):不错,能说说Stream API的使用场景吗?
谢飞机:Stream...就是流水线操作?比如过滤数据啥的...(声音渐小)
面试官(点头):很好,那你能手写一个用Stream统计单词频率的代码吗?
谢飞机:(慌张)这个...我回去再复习一下!
第二轮:Web框架与数据库
面试官:假设你有一个电商场景,如何用Spring Boot实现商品列表分页查询?
谢飞机:用@RestController加个@RequestMapping,然后...Pageable参数?(不确定)
面试官(鼓励):对,那分页数据如何缓存到Redis?
谢飞机:Redis...是不是那个set和get的东西?(尴尬笑)
面试官(耐心):再想想,比如用Spring Cache注解。
第三轮:微服务与高并发
面试官:现在有一个秒杀场景,如何用Spring Cloud保证高并发下的库存一致性?
谢飞机:呃...加锁?分布式锁?(眼神飘忽)
面试官(严肃):具体用什么实现?Redis还是ZooKeeper?
谢飞机:(汗)这个...我可能要去查查资料...
面试官:好的,今天的面试就到这里,回去等通知吧。
问题答案与解析
-
Java 8新特性:Lambda表达式简化代码,Stream API用于集合操作,示例代码:
List<String> words = Arrays.asList("hello", "world", "hello"); Map<String, Long> frequency = words.stream().collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));
-
Spring Boot分页查询:
@GetMapping("/products") public Page<Product> getProducts(Pageable pageable) { return productRepository.findAll(pageable); }
Redis缓存需配置
@Cacheable
注解。 -
秒杀场景:使用Redis分布式锁(Redisson)或数据库乐观锁保证库存一致性。
技术点:Java 8、Spring Boot、Redis、分布式锁。 业务场景:电商分页、秒杀高并发。