中国大学排名爬取与数据分析案例总结

一、案例概述

本案例展示了如何通过爬虫技术获取中国大学排名数据,并使用Python的pandas和可视化库进行数据预处理和分析的全过程。案例来源于高三网的中国大学排名一览表。

二、数据爬取部分

1.任务描述

目标网站:高三网中国大学排名一览表

爬取字段:学校名称、总分、全国排名、星级排名、办学层级

数据存储格式:CSV文件(school.csv)

二、数据预处理

数据预处理阶段主要处理了"总分"列中的空值问题,采用了四种不同的处理方法:

1.删除包含空字段的行
直接删除含有缺失值的整行数据,简单直接但可能导致数据量减少。

2.用指定内容替换空字段
例如用"无数据"或特定值(如0)填充缺失值,适用于某些特定场景。

3.计算列的均值替换空单元格
使用总分列的平均值填充缺失值,保持数据的统计特性。

4.计算列的中位数替换空单元格
使用中位数填充缺失值,对异常值不敏感。

实战案例爬取:

import requests
from bs4 import BeautifulSoup
import csv
def get_html(url, time=3):
    try:
        r = requests.get(url, timeout=time)
        r.encoding = r.apparent_encoding
        r.raise_for_status()
        return r.text
    except Exception as error:
        print(error)
        return None
def parser(html):
    soup = BeautifulSoup(html, "lxml")
    out_list = []
    for row in soup.select("table>tbody>tr"):
        td_html = row.select("td")
        row_data = [
            td_html[1].text.strip(),
            td_html[2].text.strip(),
            td_html[3].text.strip(),
            td_html[4].text.strip(),
            td_html[5].text.strip(),
        ]
        out_list.append(row_data)
    return out_list
def save_csv(data, path):
    with open(path, "w+", newline='', encoding="utf-8") as f:
        csv_write = csv.writer(f)
        csv_write.writerows(data)
if __name__ == "__main__":
    url = "http://www.bspider.top/gaosan/"
    html = get_html(url)
    if html:
        out_list = parser(html)
        save_csv(out_list, "school.csv")

三、可视化方法

1.柱形图
适合展示各星级学校的数量对比,直观显示数量分布情况。

2.饼图
适合展示各星级学校所占比例,清晰呈现整体构成。

四、技术要点总结

1.爬虫技术

网页数据抓取  结构化数据提取   CSV文件存储

2.数据处理

Pandas缺失值处理   多种填充策略选择   数据统计计算

3.数据可视化

Matplotlib/Seaborn绘图 柱形图和饼图应用场景  数据比例展示技巧

五、实际应用价值

本案例展示了从数据获取到分析展示的完整流程,适用于:

教育行业研究

大学排名分析

学生择校参考

数据科学学习案例

通过这样的分析,我们可以清晰地了解中国高校的星级分布情况,为教育决策提供数据支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值