[NOIP2011 提高组] 铺地毯
题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 nnn 张地毯,编号从 111 到 nnn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 n+2n + 2n+2 行。
第一行,一个整数 nnn,表示总共有 nnn 张地毯。
接下来的 nnn 行中,第 i+1i+1i+1 行表示编号 iii 的地毯的信息,包含四个整数 a,b,g,ka ,b ,g ,ka,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a,b)(a, b)(a,b) 以及地毯在 xxx 轴和 yyy 轴方向的长度。
第 n+2n + 2n+2 行包含两个整数 xxx 和 yyy,表示所求的地面的点的坐标 (x,y)(x, y)(x,y)。
输出格式
输出共 111 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1
。
样例 #1
样例输入 #1
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
样例输出 #1
3
样例 #2
样例输入 #2
3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
样例输出 #2
-1
提示
【样例解释 1】
如下图,111 号地毯用实线表示,222 号地毯用虚线表示,333 号用双实线表示,覆盖点 (2,2)(2,2)(2,2) 的最上面一张地毯是 333 号地毯。
【数据范围】
对于 30%30\%30% 的数据,有 n≤2n \le 2n≤2。
对于 50%50\%50% 的数据,0≤a,b,g,k≤1000 \le a, b, g, k \le 1000≤a,b,g,k≤100。
对于 100%100\%100% 的数据,有 0≤n≤1040 \le n \le 10^40≤n≤104, 0≤a,b,g,k≤1050 \le a, b, g, k \le {10}^50≤a,b,g,k≤105。
noip2011 提高组 day1 第 111 题。
完整代码
#include<iostream>
using namespace std;
int n,a[10005],b[10005],lx[10005],ly[10005],x,y;
int main()
{
//freopen("carpet.in","r",stdin);
//freopen("carpet.out","w",stdout);
int ans=0;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i]>>b[i]>>lx[i]>>ly[i];
cin>>x>>y;
for(int i=1;i<=n;i++)
if(x>=a[i]&&x<=a[i]+lx[i]&&y>=b[i]&&y<=b[i]+ly[i])
ans=i;//查看有没有越界
if(ans==0)
{
cout<<"-1";
return 0;
}//没有地毯覆盖的话
cout<<ans;
//fclose(stdin);
//fclose(stdout);
return 0;
}