计算机毕业设计源码 node校园疫情防控管理系统的设计与实现

标题:node校园疫情防控管理系统的设计与实现

基于Node.js开发的校园疫情防控管理系统可以提供多种功能,以帮助学校有效地管理和监控疫情。

以下是一些常见的主要功能模块及其详细说明:

1. 用户管理

1.1 用户注册与登录•用户注册:支持新用户(学生、教职工)通过学号/工号和手机号进行注册。•用户登录:支持用户通过学号/工号和密码登录系统。•第三方登录:支持通过微信、钉钉等第三方账号快速登录。

1.2 用户资料管理•个人信息:用户可以查看和编辑自己的个人信息,如姓名、性别、联系方式等。•健康档案:用户可以上传和更新个人健康档案,包括疫苗接种记录、核酸检测结果等。

1.3 权限管理•角色划分:区分普通用户(学生、教职工)、管理员、医务工作者等不同角色,并赋予相应的权限。•权限分配:管理员可以分配和管理其他用户的权限。

2. 健康申报

2.1 每日健康申报•申报表单:用户每日填写健康申报表,包括体温、是否有不适症状等信息。•申报提醒:系统在每天固定时间提醒用户进行健康申报。

2.2 健康数据统计•数据分析:系统对用户的健康申报数据进行分析,生成健康报告。•异常预警:发现异常情况时,系统自动发送预警通知给相关管理人员。

3. 核酸检测管理

3.1 核酸检测预约•在线预约:用户可以在线预约核酸检测。•预约查询:用户可以查询自己的预约记录。•取消预约:用户可以取消未到的预约。

3.2 核酸检测结果•结果上传:医务人员可以上传用户的核酸检测结果。•结果查询:用户可以查询自己的核酸检测结果。•结果通知:系统通过短信或邮件通知用户核酸检测结果。

4. 疫苗接种管理

4.1 疫苗接种预约•在线预约:用户可以在线预约疫苗接种。•预约查询:用户可以查询自己的预约记录。•取消预约:用户可以取消未到的预约。

4.2 疫苗接种记录•记录上传:医务人员可以上传用户的疫苗接种记录。•记录查询:用户可以查询自己的疫苗接种记录。•记录通知:系统通过短信或邮件通知用户疫苗接种记录。

5. 行程轨迹管理

5.1 行程上报•行程填报:用户可以填报自己的行程轨迹,包括出行日期、地点等。•行程审核:管理员可以审核用户的行程轨迹。

5.2 行程追踪•轨迹查询:用户可以查询自己的行程轨迹。•风险提示:系统根据用户的行程轨迹,自动识别高风险地区并发出风险提示。

6. 隔离管理

6.1 隔离申请•隔离申请:用户可以提交隔离申请。•申请审核:管理员可以审核用户的隔离申请。

6.2 隔离状态•状态查询:用户可以查询自己的隔离状态。•状态变更:管理员可以变更用户的隔离状态。

7. 数据统计与报告

7.1 数据统计•健康申报统计:统计用户的健康申报数据。•核酸检测统计:统计核酸检测的预约和结果数据。•疫苗接种统计:统计疫苗接种的预约和记录数据。

7.2 报表生成•日报表:生成每日的疫情防控报表。•月报表:生成每月的疫情防控报表。•年报表:生成每年的疫情防控报表。

7.3 可视化展示•图表展示:使用图表展示统计数据,如折线图、柱状图等。

8. 客户服务

8.1 在线客服•即时聊天:提供在线客服系统,用户可以实时与客服人员沟通。•常见问题:列出常见问题及解答,供用户自助查询。

8.2 反馈与建议•意见反馈:用户可以提交对系统的意见和建议。•投诉处理:用户可以提交投诉,系统会及时处理并反馈结果。技术栈•后端:Node.js + Express.js•数据库:MongoDB/MySQL•认证:JWT (JSON Web Tokens)•缓存:Redis•前端:React/Vue 或者原生HTML/CSS/JavaScript•移动适配:响应式设计或专门的移动端框架(如React Native, Vue Native)•云服务:阿里云/腾讯云

代码实现:

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的多项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹配、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹配、回文检测等。 阅读建议:由于哈希涉及较多数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值