基于Playwright和AI的政府采购信息智能爬取与分析系统开发实战

引言

在当今数字化时代,政府采购信息的透明化和公开化已成为政府工作的重要组成部分。这些信息对于企业投标、市场分析以及学术研究都具有极高的价值。然而,政府采购平台通常数据量大、页面结构复杂,传统的手动收集方式效率低下。本文将详细介绍如何使用Python最新技术栈构建一个高效的政府采购信息爬取系统,涵盖从基础爬虫到智能解析的全流程。

一、政府采购信息爬取的技术挑战

政府采购网站通常具有以下特点,给爬虫开发带来挑战:

  1. 动态内容加载:现代政府网站普遍采用AJAX、React、Vue等前端框架动态加载内容
  2. 反爬机制:包括验证码、IP限制、请求频率检测等
  3. 复杂页面结构:不同采购项目信息分布在多层页面中
  4. 大数据量:需要高效存储和处理数万甚至数百万条记录
  5. 数据清洗需求:非结构化文本需要转换为结构化数据

二、技术选型与最新工具介绍

1. 爬虫框架选择
  • Playwright:微软开源的现代化浏览器自动化工具,支持Chromium、WebKit和Firefox,比Selenium更快速稳定
  • Scrapy:成熟的异步爬虫框架,适合大规模数据抓取
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python爬虫项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值