摘要
本文将详细介绍如何使用Python最新技术栈(Scrapy框架+Playwright浏览器自动化)高效爬取豆瓣电影Top250数据。文章包含完整项目代码、反反爬策略、数据存储方案及可视化分析,适合中高级Python开发者学习现代爬虫技术。
目录
- 项目概述与目标
- 技术选型与优势分析
- 环境配置与依赖安装
- 项目结构设计
- 核心代码实现
- 反反爬策略详解
- 数据存储方案
- 数据可视化分析
- 项目优化方向
- 法律与伦理考量
- 完整代码附录
1. 项目概述与目标
豆瓣电影Top250是中文互联网最具公信力的电影排行榜之一,包含每部电影的评分、评价人数、导演、主演等丰富信息。我们的爬虫项目需要实现以下目标:
- 完整获取Top250所有电影数据
- 处理动态加载内容(如评论摘要)
- 绕过常见反爬机制
- 实现结构化存储
- 支持增量爬取
- 进行基础数据分析
技术指标:
- 成功率 ≥ 99%
- 完整爬取时间 ≤ 3分钟
- 数据字段完整度 100%