大模型开发:Prompt提示词工程从入门到精通
2025-05-14 22:20:00 大模型开发:Prompt提示词工程从入门到精通
提示词工程是大模型开发的基本功。本文将从原理讲解、设计流程、优化思路及案例实战这5个方面,系统性地介绍Prompt提示词工程,帮助您全面掌握提示词(Prompt)设计的全流程。
目录
- 入门篇:Prompt 工程基础
- 设计篇:Prompt 构成与流程
- 实战篇:三大范式详解与示例
- 零样本(Zero-shot)
- 少样本(Few-shot)
- 链式思维(Chain-of-Thought)
- 优化篇:调优思路与技巧
- 高级篇:模板化、自动化与工具链
- 案例篇:五大典型案例
1. 入门篇:Prompt 工程基础
什么是 Prompt 工程?
Prompt 工程(Prompt Engineering)是针对大语言模型(LLM)设计、撰写和优化输入提示词的系统化方法,目的是引导模型产生符合预期的输出。它类似于给模型“下指令”,通过巧妙的语言表达,让模型“理解”任务。
提示词的价值:
- 提高输出质量:减少歧义、控制风格、提升准确度
- 扩展应用场景:覆盖写作、翻译、代码生成、知识问答等
- 降低成本:减少反复微调、减少 API 调用次数
2. 设计篇:Prompt 构成与流程
2.1 Prompt 的三要素
- 任务说明(Instruction):明确“做什么”(如“请将下列文字翻译成英文”)
- 上下文(Context):提供必要的信息(如原文、背景、格式要求)
- 输出约束(Constraint):格式、长度、风格、语气等(如“字数不超过100字”,“以新闻稿形式”)
2.2 设计流程
- 明确目标:先写出一句“自然语言”版需求
- 拆解要素:将任务说明、上下文、约束分开梳理
- 初版编写:按照三要素拼接成完整 Prompt
- 测试验证:调用模型,观察输出,记录问题
- 迭代优化:调整指令、增删示例、微调格式
- 封装复用:将成熟 Prompt 模板化,输出文档或脚本
3. 实战篇:三大范式详解与示例
3.1 零样本(Zero-shot)
- 特点:不提供示例,直接给出指令
- 示例:文本情感分析
指令:请判断以下评论的情感倾向,并输出“正面”、“中性”或“负面”: 评论:我非常喜欢这部电影,但结尾有些仓促。 输出约束:仅输出三种标签之一
- 优化思路:可加入“简要说明理由”
3.2 少样本(Few-shot)
- 特点:提供少量输入–输出对,帮助模型“对齐”
- 示例:英文同义句改写
以下是原句及其改写示例: 示例 1: 原句:The weather is nice today. 改写:Today's weather is pleasant. 示例 2: 原句:She completed the task quickly. 改写:She finished the task in no time. 请对下列句子进行同义改写: 原句:He solved the problem efficiently. 改写:
- 示例数量:通常2–5条
- 注意:示例应多样、覆盖边界情况
3.3 链式思维(Chain-of-Thought)
- 特点:引导模型分步思考,适合复杂推理或计算
- 示例:数学题分步解答
请逐步分析并解答以下问题: “小明有12个苹果,分给3个朋友后,每人得到多少个?” 思考过程: 1. 总苹果数… 2. 每人分得 = 总数 ÷ 朋友数… 答案:
- 效果:显著提高多步推理准确率
- 扩展:可用于法务、医学等领域的逻辑推理
4. 优化篇:调优思路与技巧
明确角色设定
“你是资深律师,请用专业术语分析以下合同条款:…”
控制输出长度
“请用不超过50字概括以下内容:…”
多任务混合
“请先翻译,再给出五个关键词,再提炼摘要。”
纠错与自检
引导模型自我检查:
“请检查以上回答是否有矛盾或错误,并给出修改建议。”
温度与 Top-k 调参
- 低温度(0.0–0.3):输出更稳定、可控
- 高温度(0.7–1.0):更具创造性
5. 高级篇:模板化、自动化与工具链
- Prompt 模板库:将常用 Prompt 写成可配置的模板(如JSON + Mustache)
- 链式调用(Prompt Chaining):将多个 Prompt 串联,形成流水线
- 自动化平台:利用LangChain、PromptLayer、LlamaIndex等进行管理与监控
- 评估与度量:构建自动化评估体系(BLEU、ROUGE、人工打分等)
6. 实战案例篇
序号 | 场景 | 类型 | 要点说明 |
---|---|---|---|
1 | 情感分析 | Zero-shot | 直接判断文本情感,输出标签并简要说明 |
2 | 代码生成 | Few-shot | 提供示例代码—输入输出对,指定语言和功能 |
3 | 数据可视化建议 | Chain-of-Thought | 给定数据描述,引导模型分步思考并输出可视化图表设计方案 |
4 | 客服对话机器人 | Few-shot + 混合 | 多轮对话示例 + 上下文管理,控制回复风格 |
5 | 医学诊断报告摘要 | Chain-of-Thought | 分步提取关键指标,生成结构化报告 |
案例1:文本情感分析(Zero-shot)
指令:请判断下面用户评论的情感倾向,并输出“正面”、“中性”或“负面”,然后简要说明判断依据(不超过两句话)。
评论:这个产品的使用体验非常差,客服也毫无帮助。
期望输出:
负面
判断依据:用户明确表示体验“非常差”,且对客服服务不满。
案例2:API代码生成(Few-shot)
以下是Python调用OpenAI接口的示例:
示例1:
输入:调用text-davinci-003模型生成一句问候语
输出:
```python
import openai
openai.api_key = "YOUR_KEY"
response = openai.Completion.create(
model="text-davinci-003",
prompt="请生成一句中文问候语。",
max_tokens=20
)
print(response.choices[0].text.strip())
示例2:
输入:调用chat-gpt-4模型进行对话
输出:
import openai
openai.api_key = "YOUR_KEY"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role":"system","content":"你是助手。"},
{"role":"user","content":"今天天气如何?"}
]
)
print(response.choices[0].message.content)
请根据上述风格,编写一段Python代码,使用OpenAI接口生成一段“简单的天气预报”文本。
#### 案例3:数据可视化设计(Chain-of-Thought)
请参考以下数据描述,分步思考并给出三种可视化图表的设计方案,包括图表类型、要展示的字段、配色和标题建议。
数据描述:
- 产品销售:日期(2025-01-01至2025-04-30)、销售额、产品类别(A/B/C)、区域(华东/华南/华北)
要求:
- 分步思考每种图表的适用场景与优缺点;
- 最终输出三种图表的具体设计要点。
#### 案例4:多轮客服对话(Few-shot + 混合)
你是一个在线客服机器人,风格专业且亲和。以下为两轮示例对话:
示例1:
用户:我想查询订单12345的配送状态。
机器人:您好,我这就为您查询……您的订单已于5月12日出库,预计5月15日送达。
示例2:
用户:能更改收货地址吗?
机器人:可以的,请提供新的收货地址,我会帮您修改。
请继续与用户展开下一轮对话:
用户:我收货地址从北京市海淀区改到上海市静安区。
#### 案例5:医学诊断报告摘要(Chain-of-Thought)
场景:医生已提供患者的各项检查数据,现需生成结构化的诊断报告。
检查数据:
- 血压:135/85 mmHg
- 血糖(空腹):6.2 mmol/L
- 心率:78次/分
- 胆固醇:总胆固醇5.8 mmol/L,HDL 1.2,LDL 3.4
Prompt:
请先分步分析每项指标的正常范围、是否偏离;再根据分析给出“高血压”“血糖偏高”“心率正常”“血脂偏高”等诊断要点;最后整合成一段不超过150字的诊断报告。
好的,以上就是 Prompt 提示词工程从入门到精通系统教程。通过理解基础理论、掌握设计流程、反复实战迭代,你将能够驾驭大模型,为各类需求提供高质量解决方案。希望对你有帮助~~~
如何学习AI大模型 ?
“最先掌握AI的人,将会晚掌握AI的人有竞争优势,晚掌握AI的人比完全不会AI的人竞争优势更大”。 在这个技术日新月异的时代,不会新技能或者说落后就要挨打。
老蓝我作为一名在一线互联网企业(保密不方便透露)工作十余年,指导过不少同行后辈。帮助很多人得到了学习和成长。
我是非常希望可以把知识和技术分享给大家,但苦于传播途径有限,很多互联网行业的朋友无法获得正确的籽料得到学习的提升,所以也是整理了一份AI大模型籽料包括:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、落地项目实战等 免费分享出来。
- AI大模型学习路线图
- 100套AI大模型商业化落地方案
- 100集大模型视频教程
- 200本大模型PDF书籍
- LLM面试题合集
- AI产品经理资源合集
大模型学习路线
想要学习一门新技术,你最先应该开始看的就是学习路线图,而下方这张超详细的学习路线图,按照这个路线进行学习,学完成为一名大模型算法工程师,拿个20k、15薪那是轻轻松松!
视频教程
首先是建议零基础的小伙伴通过视频教程来学习,其中这里给大家分享一份与上面成长路线&学习计划相对应的视频教程。文末有整合包的领取方式
技术书籍籽料
当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,这里也分享一份我学习期间整理的大模型入门书籍籽料。文末有整合包的领取方式
大模型实际应用报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。文末有整合包的领取方式
大模型落地应用案例PPT
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。文末有整合包的领取方式
大模型面试题&答案
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。文末有整合包的领取方式
领取方式
这份完整版的 AI大模型学习籽料我已经上传CSDN,需要的同学可以微⭐扫描下方CSDN官方认证二维码免费领取!