智能体框架怎么选?LangChain、Dify、CrewAI、AutoGen五大框架横向对比

智能体定制开发,选择框架是第一步。

市面上智能体工具五花八门,如何区分?

这篇文章会分析五大主流框架的差异、底层逻辑和适用人群,帮你做对选型第一步。

接下来回答三个核心问题:

  1. 智能体开发,为什么需要专门框架
  2. 不同的开发框架有何适用场景和特点
  3. 如何根据技术能力 + 应用目标选择合适的那一个

适合人群

  • 对 AI 智能体感兴趣的产品经理、创业者、技术开发者
  • 想要自己做智能体工具,但不懂技术细节的小白
  • 正在搭建 AI 工作流或探索落地场景的企业主、从业者

1、为什么需要开发框架

有人会说,Agent不就是自动调用几个工具?我手写几个Python函数就完了嘛。

当然可以这么做,但一旦Agent涉及以下任意一个维度,代码复杂度就会爆炸

  • 多轮对话、上下文管理(用户多次交互)
  • 多工具组合调用(外部API、数据库、搜索引擎等)
  • 多Agent协作(类组织结构,角色协同)

这些问题不是“调大模型”能解决的,而是一个真正的“系统工程”问题,需要解决:

  • 如何组织模块?
  • 如何保持状态?
  • 如何让多个Agent协同工作,而不是互相捣乱?

所以,Agent框架的出现,就是为了结构化解决这些问题。

你可以把它理解成——

给AI Agent开发提供一个像“Spring Boot那样的工程架构”,从组件化、流程控制、状态管理,到接口定义、部署调试,一整套“编程范式”。

2、主流智能体开发框架对比

市面上开发框架五花八门,目前在开发者圈子中热度较高的智能体框架包括:

  • LangChain:最早一批爆红的框架,生态广
  • Auto-GPT:任务自主执行鼻祖
  • AutoGen:微软出品,多Agent对话编排
  • Dify:最热门的国产开源平台,支持图形界面
  • CrewAI:专注“多智能体团队”执行
  • LangGraph:LangChain团队的新作,支持状态机流程编排

LangChain:智能体框架早期布道者

img

定位:通用 LLM 应用开发框架,广泛支持数据处理、工具集成和链式思维。

语言支持:Python、JS/TS

核心能力

  • 提供“链式调用”逻辑,适合构建 Reasoning+Tool 的调用路径
  • 支持 Memory、Tool、Prompt 模块化组合
  • 支持 LangSmith 工具做调试和追踪

典型适配场景

  • 构建多步推理的问答系统
  • 与外部API/数据库结合的Agent服务

优劣势总结

  • ✅ 社区大、资料多、生态好
  • ❌ 学习曲线陡峭,链式结构复杂;对状态/任务流程控制支持不够强

代表项目:

  • LangChainHub:官方维护的 Prompt & Chain 模版库,包含文档问答、代码生成、RAG 等
  • LangChain + Pinecone 文档问答系统:最常见的入门级 RAG 应用
  • ChatLangChain:一个完整的 ChatGPT 风格 Web Demo,结合 OpenAI、Pinecone、LangChain

Auto-GPT:让模型“自主执行任务”的先行者

img

定位:开源项目,主打“自动完成任务”,曾在2023年初爆红

语言支持:Python

核心能力

  • 提供一种“自主规划→执行→自我检查→重试”的闭环
  • 每次任务执行生成完整的运行日志和Reasoning链
  • 支持插件机制调用第三方工具和Web服务

典型适配场景

  • 一次性批量执行任务,如采集、生成内容、数据清洗

优劣势总结

  • ✅ 是“AI自动执行任务”的经典代表,Demo效果惊艳
  • ❌ 稳定性差、上下文混乱、缺乏流程管理与可控性,不适合生产使用

代表项目:

  • 原版 Auto-GPT:GitHub 超50K Star,具备完整的“思考—计划—执行—反馈”机制
  • BabyAGI:轻量化智能体,强调最简可运行的 Agent 原型。
  • Private GPT + Auto-GPT 结合应用:本地大模型驱动、执行自动化任务链

AutoGen(微软):多Agent协作的调度引擎

img

定位:微软推出的轻量级框架,专注“多智能体对话式协作”

语言支持:Python

核心能力

  • 可定义多个角色(Agent),每个角色有独立目标、工具集
  • 通过对话机制实现智能体之间的交互、指令传递
  • 易于 Debug 和复盘,每轮对话可追踪

典型适配场景

  • 两个或多个Agent协作处理任务,比如开发者助手+数据分析师组合

优劣势总结

  • ✅ 高度抽象的多智能体通信模型,适合科研与复杂系统模拟
  • ❌ 部署不便、工具能力有限,更多偏向研究/探索阶段

代表项目:

  • AutoGen Multi-Agent Chat

    :智能体之间自动协作写代码、查文档、评审

  • AutoGen WebUI

    :可视化对话接口,支持人类与多个 AI Agent 混合协作

  • Microsoft Research Demo

    :AI Pair Programmer,模拟“程序员-审阅员”多智能体配合写代码

Dify:国产最活跃开源Agent平台之一

Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,可以快速从原型到生产。

img

定位:集模型服务、知识库、工作流编排为一体的开源平台
语言支持:后端Python,前端Vue;提供UI交互
核心能力

  • 提供图形界面配置Agent工作流,支持流程节点拖拽
  • 多模型适配(OpenAI、Qwen、DeepSeek、Gemini 等)
  • 支持 API 接入、私有化部署、向量知识库管理

典型适配场景

  • 快速开发面向C端/B端的应用型Agent,如客服机器人、内容生成器
  • 企业内嵌知识型助手

优劣势总结

  • ✅ 上手快、中文支持强、生态活跃、开源可私有化部署
  • ❌ 灵活度相对框架略低;复杂业务流程需二次开发

CrewAI:用“团队协作”抽象Agent工作流

相较于 AutoGen,CrewAI 更加强调其易用性和快速搭建演示的特性。该平台直观易操作,主要通过编写提示来生成和配置智能体。

不过,CrewAI 在灵活性和定制化方面有所不足,更适合处理简单的用例,而不太适合复杂的编程作业。同时,多智能体间的交互可能会存在一些 Bugs,这可能会对项目的稳定性和可靠性造成影响。

img

定位:构建多角色协作智能体的框架,强调“任务协作”模型

语言支持:Python

核心能力

  • 每个Agent定义职责(角色+工具+目标)
  • 支持线性、并行任务协作流程
  • 可以组装成类公司“组织结构”进行任务分工

典型适配场景

  • 需要多个Agent联合作战的内容生产、数据分析、流程执行任务

优劣势总结

  • ✅ 多智能体架构抽象优秀,适合“团队型Agent”落地
  • ❌ 模块封装度高,对自定义有一定限制,文档支持偏少

代表项目:

  • Research Crew

    :多个智能体分别承担“研究员、写手、审校”等角色,产出完整调研报告。

  • Sales Crew

    :由“客户分析员、邮件生成器、销售助理”组成的销售流程智能体。

  • Developer Crew

    :每个智能体负责某个开发阶段(需求分析、编码、测试

LangGraph:状态机式Agent流程引擎

LangGraph 是一款基于 LangChain 打造的 Multi-Agent 框架,该框架通过引入有向循环图的理念,打造了一个极具灵活性和可定制性的解决方案。

img

定位:LangChain团队推出的“流程编排工具”,支持构建复杂任务状态流转图

语言支持:Python

核心能力

  • 用“状态机”描述任务流程,每个节点对应一个函数/Agent
  • 支持异步、回退、分支、并行等状态切换
  • 与 LangChain 高度整合,支持 LangSmith 调试追踪

典型适配场景

  • 构建任务流程复杂、步骤明确、可中断恢复的业务系统

优劣势总结

  • ✅ 拥有“流程编排”最强能力,可应对复杂工作流场景
  • ❌ 学习曲线较陡,需要掌握状态机思想,适合高级开发者

代表项目:

  • LangGraph x LangChain

    :结合构建复杂对话状态机的智能客服

  • 可视化任务流系统

    :将 Agent 行为建模为节点-状态图,方便调试和追踪

  • 多轮情感分析 Agent

    :依赖状态图流程,进行逐步文本情感判断

img

3、开发框架横向对比

我们从以下 6 个维度来横向对比上面提到的 6 大框架/平台:

img

快速总结:怎么选?

  • 入门上手快:选 Dify,有图形界面、中文文档、社区活跃,适合中小项目验证想法。
  • 做复杂任务流程:选 LangGraph,它让你精细控制每个步骤、状态,适合严肃业务。
  • 强调“团队智能体”协作:选 CrewAIAutoGen,多角色之间可协同工作。
  • 探索自动任务执行玩法:选 Auto-GPT,适合研究型项目或炒概念。
  • 想全栈开发、自由度高:选 LangChain,配合 LangSmith 做调试,通用但复杂。

如果你只是想快速做出“能用”的产品/Demo:
👉Dify + LangChain 封装 是当前最成熟组合方案。

如果你是重度技术用户/创业者:
👉 建议深入研究 LangGraph + AutoGen + CrewAI,了解如何设计多Agent系统的结构、流程与策略。

4、最后:框架只是一部分,Agent创业真正要解决业务问题

很多人陷在“Agent怎么构建”的技术细节中,却忽略了一个核心问题:

真正值钱的不是 Agent 本身,而是它解决了什么 “重复且高频”的问题。

选框架、搭智能体只是第一步,更重要的是:

  • 找到一个真实、痛的、常规的场景
  • 明确 Agent 能帮你节省哪些成本 or 创造哪些收益
  • 用最低的技术复杂度,快速上线 + 快速验证

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

ENVI软件在遥感影像处理中扮演着至关重要的角色,其中影像的几何纠正功能对于确保影像数据的精确性至关重要。几何纠正的过程涉及调整影像坐标,使其与实际地理坐标系统一致,这一步骤对于后续的分析和制图至关重要。 参考资源链接:[ENVI遥感影像处理全面指南:预处理、信息提取与三维可视化](https://wenku.csdn.net/doc/398pr5x5h3?spm=1055.2569.3001.10343) 具体步骤如下: 1. 打开ENVI软件,导入需要进行几何纠正的遥感影像。 2. 择相应的工具,例如“Basic Tools”菜单下的“Geometric Correction”项。 3. 根据影像数据类型和需要达到的精度,择合适的纠正方法。ENVI提供了多种纠正算法,包括多项式模型、共线方程、地面控制点(GCP)校正等。 4. 如果使用GCP校正,需要在影像上择若干地面控制点,并输入这些点的实际地理坐标,作为校正的基础。 5. 进行校正参数的计算,这个过程通常涉及到解算一个或多个多项式方程,以最小化影像中的点与真实地理坐标间的偏差。 6. 使用计算得到的参数进行影像的重新采样和配准,最终输出几何校正后的影像。 7. 校正结果需要评估,一般通过比较校正前后GCP的残差来验证校正的精度和效果。 适用场景: 几何纠正广泛应用于地形变化检测、土地利用调查、城市规划、环境监测等多个领域。在这些应用场景中,影像的几何准确性直接影响到分析结果的可靠性。 为了深入学习ENVI中遥感影像几何纠正的更多细节和高级应用,推荐参考《ENVI遥感影像处理全面指南:预处理、信息提取与三维可视化》一书。该指南不仅提供了理论知识,还详细介绍了操作步骤和实际应用案例,有助于读者全面掌握几何纠正的技巧和方法。 参考资源链接:[ENVI遥感影像处理全面指南:预处理、信息提取与三维可视化](https://wenku.csdn.net/doc/398pr5x5h3?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值