一文读懂 MCP:从理论到实践,看透模型上下文协议的运作逻辑

一、前言

曾几何时,使用MCP服务还得手动复制粘贴JSON代码,不少工具甚至连配套资源和提示都没有——那时的MCP,就像一件功能强大却操作复杂的"半成品"。

但随着今年"智能体"浪潮的爆发,用户对AI使用工具的需求陡增。如今,MCP服务市场的兴起、自动配置功能的出现,正让这个技术的门槛不断降低:越来越多平台宣布支持MCP协议,一场关于"AI工具标准化"的变革已悄然来临。

市面上讲MCP的文章不少,要么堆满代码让非开发者望而却步,要么只教操作不谈原理。本文想换个思路:先用生活化的语言讲清理论,再结合ModelScope的MCP市场和Cherry Studio客户端展示实际运作过程,最后聊聊现状与未来——让你不仅"会用",更能"看透"。

二、理论基础:MCP不是凭空出现的

要理解MCP,得先说说它的"前辈":RAG和Function Calling。这三者就像AI的"辅助工具进化史",一步步让大模型从"孤军奋战"变成"善于借力"。

2.1 RAG:给大模型"带本参考书"

RAG(检索增强生成)的核心很简单:不用费劲训练大模型,只要给它塞点"参考资料",就能让回答更靠谱

请添加图片描述

比如你问"2024年AI领域的重大突破",直接问大模型可能答不全(毕竟它的知识有截止日期)。但如果用RAG,流程会变成这样:

  1. 先把2024年的AI新闻、论文转换成电脑能理解的"向量",存进专门的数据库;
  2. 你提问时,系统会从数据库里捞出最相关的内容(比如"GPT-5发布"“多模态模型突破”);
  3. 把这些内容和你的问题一起发给大模型,它就能结合最新信息给出答案。

简单说,RAG就是给大模型"开卷考试",让它不用死记硬背也能答对外界动态。

2.2 Function Calling:教大模型"用计算器"

如果说RAG是"查资料",那Function Calling(函数调用)就是让大模型"动手做事"。

请添加图片描述

比如你问"北京明天的天气适合野餐吗",大模型自己算不出来,但它可以通过Function Calling调用天气API:

  1. 大模型识别到"需要实时天气数据",决定调用天气工具;
  2. 按照工具要求的格式(比如输入城市名)发送请求;
  3. 工具返回"明天北京小雨,气温15℃",大模型再据此告诉你"不适合野餐"。

但问题来了:每个工具的调用格式都不一样(比如有的要"城市ID",有的要"拼音"),改一次工具,所有用到它的AI都得跟着改代码——这就像每个电器都用不同接口,换个设备就得换充电器。

2.3 MCP:给AI工具装个"通用插座"

MCP(模型上下文协议)就是为解决这个问题而生的。它是Anthropic在2024年11月推出的开源标准,相当于给AI工具装了个"USB-C接口"——不管你是天气工具、翻译软件还是数据库,只要支持MCP,任何AI都能轻松调用。

请添加图片描述

2.3.1 MCP的核心组件
  • 主机(Host):比如Claude、Cursor这些AI应用,是用户直接交互的界面;
  • MCP客户端:装在主机里的"翻译官",负责和外部工具沟通;
  • MCP服务器:提供具体功能的工具(比如新闻查询、文件转换),同时告诉客户端"我能做什么、需要什么参数"。
2.3.2 MCP的优势:灵活到"自动适应变化"

传统API就像"固定菜单":点单必须按菜单上的格式(比如"要2个参数:城市和日期"),一旦菜单变了(比如加个"温度单位"),所有顾客都得重新学怎么点单。

MCP则是"自助点餐台":

  1. AI想调用工具时,先问服务器:“你能做什么?要我提供什么?”
  2. 服务器会返回最新的"能力清单"(比如"现在需要城市、日期、温度单位");
  3. AI按清单准备参数,哪怕服务器明天加了新要求,AI也能自动按新清单调整——不用改一行代码。
2.3.3 MCP的运作流程
  1. 用户在主机(比如Cherry Studio)里提问:“查下今天的科技新闻”;
  2. 主机里的MCP客户端让大模型选工具(比如"科技新闻查询");
  3. 客户端向对应MCP服务器确认"需要什么参数"(比如"要国内还是国际新闻");
  4. 服务器返回新闻内容,客户端再把结果发给大模型;
  5. 大模型整理内容,告诉用户"今天最火的是AI手机发布"。

请添加图片描述

三、MCP学习与资源

想深入研究MCP?这几个渠道很实用:

3.1 主流MCP市场

  • ModelScope:国内最大的MCP服务平台,有丰富的中文工具(新闻、文档处理等);
    请添加图片描述

  • 阿里云百炼:和阿里系工具(如高德地图、钉钉)结合紧密,适合企业用户;

请添加图片描述

  • Anthropic官方市场:国外服务多,适合研究原汁原味的MCP协议。

3.2 快速上手技巧

  1. 用Qwen深入拆解:在通义千问里输入"MCP运作的5个步骤",它会用动画和案例讲透细节;
  2. 读源码学原理:Clone Cherry Studio的GitHub仓库,用AI编程工具(如Cursor)直接问"这段代码是怎么处理MCP请求的";
  3. 从场景练起:试着用MCP调用翻译工具+新闻工具,完成"把国际科技新闻翻译成中文"的任务。

四、现状与展望

MCP虽然好用,但目前还有些"成长的烦恼":

4.1 待解决的问题

  • 手动开关太麻烦:现在用MCP得手动选工具(比如"开启新闻查询"),未来可能会像"剧本杀"一样——根据场景自动开启需要的工具(比如聊旅游时自动打开天气和景点查询);
  • Token消耗太高:开太多工具时,大模型得先读一遍所有工具的"能力清单",未来可能用本地小模型先筛选一遍,只把有用的工具告诉大模型;
  • 工具稳定性不足:有时调用工具会失败(比如服务器维护),需要一个"工具健康度检测"功能,坏了就自动换下一个。

4.2 未来:不止"单个AI用工具",而是"多个AI协作"

现在MCP解决的是"AI和工具的沟通",但未来更重要的是"AI和AI的协作"。比如谷歌最近提出的A2A协议,就是让不同智能体(比如"翻译AI"和"数据分析AI")能互相配合——MCP负责让它们调用共同的工具,A2A负责让它们分工聊天。

也许不久后,你说一句"策划一场家庭旅行",就会有一个智能体用MCP查机票,另一个订酒店,第三个规划路线,最后汇总成方案给你——而这一切,都离不开MCP搭建的"通用接口"。

MCP可能不是最终形态,但它让AI使用工具的门槛降低了一个维度。就像早期的互联网协议一样,今天的标准化尝试,终将为未来的AI生态打下基础。

五、那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

六、为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

七、👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### Spring AI MCP Java SDK 概述 Spring AI MCP 是一种基于 Model Context Protocol (MCP) 的 Java 实现,旨在简化模型上下文协议的应用开发过程。通过该 SDK,开发者可以轻松构建支持 MCP 协议的服务端和客户端应用程序[^1]。 #### 核心功能 - **多传输选项**:支持多种通信方式,便于灵活集成到不同的技术栈中。 - **三层架构设计**: - **MCP 客户端**:负责向服务端发送请求并处理响应。 - **MCP 服务器**:提供 API 接口供客户端调用,并管理模型上下文数据。 - **工具回调接口(ToolCallbackProvider)**:允许扩展自定义行为以适应特定需求[^2]。 --- ### 使用方法 以下是关于如何使用 Spring AI MCP Java SDK 构建服务端和客户端的具体指导: #### 1. 引入 Maven 依赖 在项目的 `pom.xml` 文件中添加以下依赖项来引入 Spring AI MCP SDK: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-mcp</artifactId> <version>1.0.0-M6</version> </dependency> ``` #### 2. 配置 YML 文件 创建或修改项目中的 `application.yml` 或 `application.properties` 文件,设置必要的参数。例如: ```yaml spring: ai: mcp: server-url: http://localhost:8080/mcp-server client-id: my-client-id secret-key: my-secret-key ``` #### 3. 编写服务端代码 服务端需要实现 ToolCallbackProvider 并将其注册到容器中。示例代码如下: ```java import org.springframework.ai.mcp.ToolCallbackProvider; import org.springframework.stereotype.Component; @Component public class MyToolCallbackProvider implements ToolCallbackProvider { @Override public String handleRequest(String requestPayload) { // 自定义逻辑处理接收到的数据 return "Response from tool callback provider"; } } ``` 同时,在控制器类中暴露 RESTful API 来接收来自客户端的请求: ```java import org.springframework.web.bind.annotation.*; @RestController @RequestMapping("/mcp-server") public class McpServerController { private final ToolCallbackProvider toolCallbackProvider; public McpServerController(ToolCallbackProvider toolCallbackProvider) { this.toolCallbackProvider = toolCallbackProvider; } @PostMapping("/process") public String process(@RequestBody String payload) { return toolCallbackProvider.handleRequest(payload); } } ``` #### 4. 编写客户端代码 客户端可以通过简单的 HTTP 请求与服务端交互。下面展示了一个基本的 Controller 示例: ```java import org.springframework.beans.factory.annotation.Value; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.*; import org.springframework.web.client.RestTemplate; @RestController @RequestMapping("/mcp-client") public class McpClientController { private final RestTemplate restTemplate; @Value("${spring.ai.mcp.server-url}") private String serverUrl; public McpClientController(RestTemplate restTemplate) { this.restTemplate = restTemplate; } @GetMapping("/send-request") public ResponseEntity<String> sendRequest() { String url = serverUrl + "/process"; String requestBody = "{\"key\":\"value\"}"; return restTemplate.postForEntity(url, requestBody, String.class); } } ``` --- ### 总结 Spring AI MCP 提供了一套完整的解决方案,帮助开发者快速搭建基于 MCP 协议的应用程序。无论是作为服务提供商还是消费者角色,都可以借助其强大的功能模块完成复杂的业务场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值