【求职干货】AI 产品经理(PM) 面试 30 道必问题

一、技术理解类(8 题)

前言 AI技术落地加速,企业对AI PM的要求已升级为“懂技术、能落地、善决策”,但不少求职者备战时,常因技术概念模糊、场景结合能力弱陷入困境。

为此,我们整理这份AI PM高频面试30题集,覆盖技术理解、产品设计、项目经验、情景处理、行业趋势五大维度。每题均附考察点与答题思路:技术题帮夯实基础,设计题验落地能力,情景题测决策力,既补知识盲区,也教你用专业逻辑梳理经验。

无论你是转型新手还是进阶从业者,这份资料都能帮你精准备考,面试中展现技术认知与产品思维,拿下理想offer。

1. 解释 Transformer 架构的核心原理,以及它对大模型发展的影响。

考察点:基础技术认知、技术演进洞察力
答题思路

  • 核心原理:注意力机制(自注意力 / 交叉注意力)、Encoder-Decoder 结构、并行计算优势

  • 影响:推动 BERT/GPT 等模型发展,实现长文本依赖建模,奠定大模型多模态能力基础

2. 什么是 RAG 系统?在实际项目中如何设计和优化 RAG 架构?

考察点:检索增强技术应用、系统设计能力
答题思路

  • 定义:检索增强生成(Retrieval-Augmented Generation),结合外部知识库提升回答准确性

  • 设计关键点:

    • 向量数据库选型(如 Milvus/FAISS)

    • 检索策略(混合检索 / RAG-Fusion)

    • 知识更新机制(定时同步 / 增量更新)

3. 如何评估大模型的性能?请列举至少 3 个关键指标并解释其意义。

考察点:模型评估体系、指标选择合理性
答题思路

  • 基础指标:准确率(Accuracy)、召回率(Recall)、F1 分数(平衡精确率与召回率)

  • 场景指标:

    • 客服场景:转接人工率、问题解决率

    • 推荐场景:CTR(点击率)、转化率

    • 生成场景:BLEU 分数(文本生成)、用户满意度评分

4. 什么是提示词工程?请举例说明如何设计有效的思维链(Chain-of-Thought)提示词。

考察点:工程实践能力、复杂问题拆解能力
答题思路

  • 定义:通过优化输入提示词引导模型输出期望结果

  • CoT 示例:
    " 解答数学题:某商店 3 件 T 恤 120 元,买 5 件需多少钱?
    步骤 1:先算单价:120÷3=40 元
    步骤 2:再算 5 件总价:40×5=200 元
    答案:200 元 "

5. 模型微调(Fine-tuning)和提示词调优(Prompt Tuning)的区别是什么?如何选择适用场景?

考察点:技术方案选型、成本效益权衡
答题思路

维度

微调(Fine-tuning)

提示词调优(Prompt Tuning)

数据需求

大量标注数据

少量样本即可

计算成本

高(需更新模型参数)

低(仅优化提示向量)

适用场景

垂直领域深度适配

通用模型快速适配多任务

6. 解释数据漂移(Data Drift)和模型漂移(Model Drift),如何监控和应对?

考察点:数据质量管理、系统稳定性意识
答题思路

  • 数据漂移:输入数据分布变化(如用户行为突变)
    监控:定期计算训练数据与线上数据的分布差异(PSI 指标)
    应对:增量数据标注、模型重训练

  • 模型漂移:模型性能随时间下降
    监控:实时跟踪核心指标(如准确率、响应时间)
    应对:A/B 测试新模型、引入规则引擎兜底

7. 什么是 MoE(混合专家系统)模型?它在产品落地中有哪些优势和挑战?

考察点:前沿技术认知、落地可行性分析
答题思路

  • 原理:将大模型拆分为多个 "专家子模型",路由机制动态选择子模型处理输入

  • 优势:参数量与计算效率平衡,支持千亿级模型部署

  • 挑战:路由策略设计复杂,推理延迟较高

8. 如何平衡模型性能和推理成本?举例说明模型量化或压缩技术的应用。

考察点:工程化思维、资源优化能力
答题思路

  • 量化技术:4bit/8bit 量化(如 AWQ 方法),精度损失<10% 时显存占用降低 75%

  • 剪枝:移除冗余神经元,如 MobileBERT 压缩 BERT 模型体积 40%

  • 案例:某智能音箱通过模型量化将推理延迟从 500ms 降至 200ms

二、产品设计类(7 题)

9. 请设计一个 AI 客服系统,需考虑意图识别、多轮对话、情绪识别等功能,说明技术选型和评估指标。

考察点:复杂场景设计、技术与业务结合
答题思路

  • 技术架构:

    • 意图识别:BERT 微调 + 规则引擎兜底

    • 多轮对话:对话状态跟踪(DST)+ 上下文窗口管理

    • 情绪识别:语音情感分析(如 CNN-LSTM 模型)+ 文本情绪分类

  • 评估指标:意图识别准确率(目标>90%)、平均对话轮次、用户满意度

10. 如果要为电商平台设计智能推荐系统,你会如何定义用户画像和推荐策略?

考察点:用户洞察、算法策略设计
答题思路

  • 用户画像维度:基础属性(年龄 / 性别)、行为数据(浏览 / 购买历史)、兴趣标签(如 "母婴"" 数码 ")

  • 推荐策略:

    • 冷启动:基于热门商品 + 用户注册信息

    • 协同过滤:用户 - 物品矩阵(如 ALS 算法)

    • 实时推荐:结合上下文(如当前浏览商品、天气、时间)

11. 如何设计一个基于大模型的文档问答产品?关键技术挑战是什么?

考察点:产品架构能力、技术难点预判
答题思路

  • 核心流程:文档解析→文本分块→向量存储→检索问答

  • 挑战:

    • 长文档处理(如 PDF 解析、表格 / 图片识别)

    • 多语言支持(小语种模型适配)

    • 答案可解释性(引用文档来源页码)

12. 假设要开发 AI 医疗诊断工具,如何处理数据隐私和伦理问题?

考察点:合规意识、伦理风险应对
答题思路

  • 数据隐私:

    • 脱敏处理(去标识化、差分隐私)

    • 本地部署(数据不出医院内网)

  • 伦理设计:

    • 人工复核机制(AI 建议需医生确认)

    • 偏见检测(避免对特定人群误诊率差异)

    • 透明化说明(告知用户 AI 诊断的局限性)

13. 如何设计提示词模板库,提升大模型在特定场景的应用效果?

考察点:工具化思维、效率优化能力
答题思路

  • 模板分类:按场景(如客服话术生成、报告撰写)、按任务(摘要 / 翻译 / 分析)

  • 优化方法:

    • 变量设计(如 {{用户问题}}{{历史对话}})

    • AB 测试不同模板变体(如语气调整、指令顺序)

    • 版本管理(记录模板迭代日志)

14. 请描述一个你认为成功的 AI 产品,分析其核心竞争力和可改进点。

考察点:产品分析能力、批判性思维
答题思路

  • 案例:ChatGPT

    • 实时数据更新(当前依赖训练数据截止时间)

    • 减少幻觉(如虚构事实)

    • 个性化参数调节(如 "简洁回答"/"详细解释" 模式)

    • 竞争力:对话连贯性强、多任务支持、快速迭代

    • 改进点:

15. 在 AI 产品中,如何设计人机协作流程(如 AI 辅助人工决策)?

考察点:用户体验设计、人机协同思维
答题思路

  • 协作模式:

    • AI 预处理:自动筛选高优先级任务(如客服系统优先分配复杂问题给人工)

    • 人工反馈:标注错误案例用于模型迭代

  • 界面设计:

    • 突出 AI 建议置信度(如 "90% 置信:此用户为高价值客户")

    • 一键拒绝 / 修正 AI 结果的快捷操作

三、项目经验类(6 题)

16. 分享一个你主导的 AI 产品项目,说明你的角色、遇到的挑战及解决方案。

考察点:项目领导力、问题解决能力
答题思路:(STAR 法则)

  • 情境(S)

    某金融 APP 智能风控系统开发

  • 任务(T)

    降低信用卡欺诈率,同时减少误判

  • 行动(A)
    • 设计特征工程(用户行为序列 + 交易模式)

    • 协调数据团队解决样本不平衡问题(SMOTE 过采样)

  • 结果(R)

    欺诈识别率提升 40%,误判率下降 15%

17. 如何推动跨部门协作(如与算法团队、数据团队)完成 AI 项目落地?

考察点:沟通协调能力、资源整合能力
答题思路

  • 技术翻译:将业务需求转化为算法目标(如 "提升用户停留时间"→"优化推荐 CTR")

  • 里程碑对齐:拆分阶段性目标(如 "2 周内完成数据标注规范,4 周内输出模型 Demo")

  • 冲突解决:建立 AI 效果评估委员会,客观评判技术方案

18. 描述一次你因为技术理解不足导致产品设计问题的经历,如何解决?

考察点:自我反思能力、学习迭代速度
答题思路

  • 案例:设计实时语音转写功能时,未考虑模型推理延迟,导致用户体验卡顿

  • 解决:

    • 紧急优化:引入流式推理(边说话边处理)

    • 长期改进:学习模型部署知识,参与 MLOps 流程设计

19. 在数据标注质量不足时,你会采取哪些措施保证模型效果?

考察点:数据治理能力、风险应对
答题思路

  • 标注流程优化:

    • 设计标注指南(如 "什么是垃圾评论" 的详细示例)

    • 引入交叉验证(3 人标注一致才通过)

  • 技术补偿:

    • 半监督学习(少量标注数据 + 大量无标注数据)

    • 数据增强(如文本同义词替换、图像旋转)

20. 如何制定 AI 产品的迭代 roadmap?举例说明优先级排序方法。

考察点:产品规划能力、优先级判断逻辑
答题思路

  • 框架:采用 RICE 评分法

    • R(Reach)

      影响用户数

    • I(Impact)

      业务价值(1-5 分)

    • C(Confidence)

      把握度(0-100%)

    • E(Effort)

      开发成本(人天)

  • 案例:某 AI 助手迭代排序:修复回答错误(RICE=8)>新增表情包生成(RICE=5)

21. 分享一个你使用提示词工程优化产品效果的案例,效果如何?

考察点:工程实践、效果量化能力
答题思路

  • 场景:智能客服话术生成

  • 优化前:提示词为 "生成退款话术",回复生硬

  • 优化后:
    " 生成退款话术:

    1. empathy(共情):理解用户不满

    2. solution(解决方案):说明退款流程

    3. next step(下一步):引导用户操作
      示例:' 非常理解您的心情,退款将在 24 小时内到账,您可以在 APP - 我的订单中查看进度。'"

  • 效果:用户满意度提升 28%,平均对话时长减少 15 秒

四、情景处理类(5 题)

22. 如果模型准确率未达预期,但业务方要求尽快上线,你会如何决策?

考察点:风险评估、 stakeholder 管理
答题思路

  • 短期方案:

    • 灰度发布(仅开放 10% 用户)

    • 规则引擎兜底(关键场景用传统逻辑保障)

  • 长期承诺:2 周内迭代模型,设置明确指标(如准确率从 85% 提升至 92%)

  • 数据支撑:展示竞品对比、用户调研结果,说明仓促上线的风险

23. 如何向非技术背景的领导解释 AI 项目的延迟风险?

考察点:沟通表达能力、技术翻译能力
答题思路

  • 类比说明:"AI 模型训练就像教学生考试,需要大量习题(数据)和错题纠正(调优),如果习题质量差(数据标注问题),就需要更多时间复习(重新标注)"

  • 可视化进度:用甘特图展示关键节点延误情况(如数据准备延迟 3 天,影响整体进度)

  • 替代方案:是否可先上线 MVP 版本,核心功能后续迭代

24. 当用户反馈 AI 功能 “不好用” 时,你会如何定位问题根源?

考察点:用户反馈分析、问题定位逻辑
答题思路

  • 分层排查:

    1. 功能层

      是否满足用户预期(如 "智能推荐是否展示相关商品")

    2. 技术层

      模型准确率、响应速度、交互流畅度

    3. 需求层

      是否误解用户真实需求(如 "用户要简洁回答,AI 却输出长篇大论")

  • 工具:用户行为埋点(热力图)、A/B 测试不同方案

25. 如何处理 AI 模型的偏见问题(如性别、种族歧视)?

考察点:伦理意识、公平性设计能力
答题思路

  • 数据层面:检查训练数据中的偏见(如职业词汇性别关联),进行去偏处理

  • 算法层面:引入公平性约束(如 demographic parity)

  • 产品层面:

    • 设计偏见检测模块(实时监控输出内容)

    • 提供用户反馈渠道(如 "举报不当内容" 按钮)

26. 在资源有限的情况下,如何优先实现 AI 产品的核心功能?

考察点:MVP 思维、资源分配能力
答题思路

  • 核心功能定义:满足 80% 用户需求的 20% 功能

  • 案例:智能问答产品 MVP 优先级

    1. 基础文本问答(核心价值)

    2. 文档上传解析(扩展场景)

    3. 多轮对话记忆(体验优化)

  • 技术取舍:优先使用 API 调用(如 GPT-4)快速验证,后续再自研模型

四、情景处理类(5 题)

22. 如果模型准确率未达预期,但业务方要求尽快上线,你会如何决策?

考察点:风险评估、 stakeholder 管理
答题思路

  • 短期方案:

    • 灰度发布(仅开放 10% 用户)

    • 规则引擎兜底(关键场景用传统逻辑保障)

  • 长期承诺:2 周内迭代模型,设置明确指标(如准确率从 85% 提升至 92%)

  • 数据支撑:展示竞品对比、用户调研结果,说明仓促上线的风险

23. 如何向非技术背景的领导解释 AI 项目的延迟风险?

考察点:沟通表达能力、技术翻译能力
答题思路

  • 类比说明:"AI 模型训练就像教学生考试,需要大量习题(数据)和错题纠正(调优),如果习题质量差(数据标注问题),就需要更多时间复习(重新标注)"

  • 可视化进度:用甘特图展示关键节点延误情况(如数据准备延迟 3 天,影响整体进度)

  • 替代方案:是否可先上线 MVP 版本,核心功能后续迭代

24. 当用户反馈 AI 功能 “不好用” 时,你会如何定位问题根源?

考察点:用户反馈分析、问题定位逻辑
答题思路

  • 分层排查:

    1. 功能层

      是否满足用户预期(如 "智能推荐是否展示相关商品")

    2. 技术层

      模型准确率、响应速度、交互流畅度

    3. 需求层

      是否误解用户真实需求(如 "用户要简洁回答,AI 却输出长篇大论")

  • 工具:用户行为埋点(热力图)、A/B 测试不同方案

25. 如何处理 AI 模型的偏见问题(如性别、种族歧视)?

考察点:伦理意识、公平性设计能力
答题思路

  • 数据层面:检查训练数据中的偏见(如职业词汇性别关联),进行去偏处理

  • 算法层面:引入公平性约束(如 demographic parity)

  • 产品层面:

    • 设计偏见检测模块(实时监控输出内容)

    • 提供用户反馈渠道(如 "举报不当内容" 按钮)

26. 在资源有限的情况下,如何优先实现 AI 产品的核心功能?

考察点:MVP 思维、资源分配能力
答题思路

  • 核心功能定义:满足 80% 用户需求的 20% 功能

  • 案例:智能问答产品 MVP 优先级

    1. 基础文本问答(核心价值)

    2. 文档上传解析(扩展场景)

    3. 多轮对话记忆(体验优化)

  • 技术取舍:优先使用 API 调用(如 GPT-4)快速验证,后续再自研模型

五、行业趋势与职业规划(5 题)

27. 你认为 2025-2026 年 AI 产品的发展趋势是什么?对 PM 能力有何新要求?

考察点:行业洞察力、职业前瞻性
答题思路

  • 趋势:

    1. 多模态融合(文本 + 图像 + 3D 模型)

    2. Agent 化(如 AutoGPT 自动完成复杂任务)

    3. 边缘计算 AI(端侧模型轻量化部署)

  • 能力要求:

    • 跨模态设计能力

    • 复杂系统架构认知(如多智能体协作)

28. 传统产品经理转型 AI PM 需要补充哪些技能?你的学习计划是什么?

考察点:自我认知、学习能力
答题思路

  • 技能补充:

    1. 技术基础:机器学习流程、大模型原理(推荐课程:Andrew Ng《Machine Learning》)

    2. 工具实践:Python 数据分析、LangChain 开发

    3. 行业知识:垂直领域 AI 应用(如医疗 AI 需了解 DICOM 标准)

  • 学习计划:3 个月入门(技术扫盲→工具实战→项目落地)

29. 如何看待 AI 对产品经理岗位的影响?未来 PM 会被取代吗?

考察点:职业价值认知、危机意识
答题思路

  • AI 取代部分工作:需求分析、原型绘制等标准化任务(如 AI 生成 PRD)

  • PM 核心价值(不可替代):

    • 业务洞察力(发现 AI 可解决的高价值问题)

    • 伦理决策(平衡技术可行性与用户利益)

    • 跨团队协调(推动 AI 落地的 "翻译官")

30. 你最想进入哪个 AI 应用领域(如医疗、金融、教育),为什么?

考察点:职业定位、行业理解深度
答题思路:(以医疗 AI 为例)

  • 选择原因:

    1. 社会价值:AI 辅助诊断可缓解医疗资源不均

    2. 技术挑战:多模态数据处理(影像 + 文本病历)

    3. 个人匹配:有生物医学背景,参与过医疗数据标注项目

读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门

如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会

👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心; 👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备; 👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。

你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓ 在这里插入图片描述

为什么要学习大模型?

数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!! 在这里插入图片描述

大模型学习路线汇总

整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会! 在这里插入图片描述

大模型实战项目&配套源码

光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识 在这里插入图片描述

大模型学习必看书籍PDF

我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。 在这里插入图片描述

大模型超全面试题汇总

在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余 在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。 在这里插入图片描述 👉获取方式

😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】 在这里插入图片描述 相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值