c++ 染色法判定二分图

文章介绍了一种使用C++编程语言实现的算法,通过染色法判断无向图是否为二分图。该算法采用深度优先搜索(DFS),从任意未染色的顶点开始,尝试给相邻顶点染上不同颜色。如果过程中发现相邻顶点颜色相同,则说明图不是二分图。给定一个无向图的边信息,程序会输出图是否为二分图的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C++ 中的染色法(Coloring Algorithm)是一种用于解决图论问题的算法。其基本思路是将图中的每个节点染上不同的颜色,使得每条边所连接的两个节点颜色不同。

如果判断一个图是不是二分图?

开始对任意一未染色的顶点染色。

判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色。

若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。

bfs和dfs可以搞定!

具体问题:

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。

数据范围
1≤n,m≤10^5

输入样例

4 4
1 3
1 4
2 3
2 4

输出样例
 

Yes

具体代码

#include<algorithm>
#include<iostream>
#include<cstring>

using namespace std;

const int N=100010,M=2*N;

int n,m;
int h[N],e[M],ne[M],idx;
int color[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool dfs(int u,int c)
{
    color[u]=c;//u的点成 c 染色
    
    //遍历和 u 相邻的点
    for(i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值