动态规划3:746. 使用最小花费爬楼梯

动态规划解题步骤:

1.确定状态表示:dp[i]是什么

2.确定状态转移方程:dp[i]等于什么

3.初始化:确保状态转移方程不越界

4.确定填表顺序:根据状态转移方程即可确定填表顺序

5.确定返回值

题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)

题解1:

1.状态表示:dp[i]表示到达下标为i台阶的最小花费

2.状态转移方程:dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

3.初始化:初始化dp[0]=0、dp[1]=0

4.填表顺序:从左向右

5.返回值:dp[n](n为台阶数)

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        size_t n=cost.size();
        //无需处理边界条件,n默认>=2

        //创建dp表
        vector<int> dp(n+1);
        //初始化
        dp[0]=dp[1]=0;
        //填表
        for(int i=2;i<=n;++i)
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        //返回值
        return dp[n];
    }
};

题解2:

1.状态表示:dp[i]表示从下标为i的台阶出发到达楼顶的最小花费

2.状态转移方程:dp[i]=cost[i]+min(dp[i+1],dp[i+2])

3.初始化:初始化dp[n-1]=cost[n-1]、dp[n-2]=cost[n-2]

4.填表顺序:从右向左

5.返回值:min(dp[0],dp[1])

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        size_t n=cost.size();
        //无需处理边界条件

        //创建dp表
        vector<int> dp(n);
        //初始化
        dp[n-1]=cost[n-1];dp[n-2]=cost[n-2];
        //填表
        for(int i=n-3;i>=0;--i)
            dp[i]=cost[i]+min(dp[i+1],dp[i+2]);
        //返回值
        return min(dp[0],dp[1]);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周丕才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值