动态规划5:62. 不同路径

动态规划解题步骤:

1.确定状态表示:dp[i]是什么

2.确定状态转移方程:dp[i]等于什么

3.初始化:确保状态转移方程不越界

4.确定填表顺序:根据状态转移方程即可确定填表顺序

5.确定返回值

题目链接:62. 不同路径 - 力扣(LeetCode)

题解:

1. 状态表示:dp[i]表示到达[i,j]位置有几种方法

2.状态转移方程:dp[i][j]=dp[i-1][j]+dp[i][j-1]

3.初始化:初始化第一行和第一列,值为1

4.填表顺序:遍历二维数组依次填写

5.返回值:dp[m-1][n-1]

class Solution {
public:
    int uniquePaths(int m, int n) {
        //创建dp表
        vector<vector<int>> dp(m);
        for(int i=0;i<m;++i) dp[i].resize(n);
        //初始化
        for(int i=0;i<m;++i) dp[i][0]=1;
        for(int j=0;j<n;++j) dp[0][j]=1;
        //填表
        for(int i=1;i<m;++i)
        {
            for(int j=1;j<n;++j)
            {
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

//dp[i][j]=dp[i-1][j]+dp[i][j-1]

优化题解:

将初始化与填表合并,但是为了防止填表越界,需要多开一行一列空间,并且多开的空间需要填入合适的值以保证填表正确。本题需要使dp[0][1]=1,其余位置为0。注意返回值改变!

class Solution {
public:
    int uniquePaths(int m, int n) {
        //创建dp表(多开一行一列)
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        //多开位置填值
        dp[0][1]=1;
        //填表
        for(int i=1;i<=m;++i)
            for(int j=1;j<=n;++j)
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
        return dp[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周丕才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值