动态规划14:LCR 091. 粉刷房子

动态规划解题步骤:

1.确定状态表示:dp[i]是什么

2.确定状态转移方程:dp[i]等于什么

3.初始化:确保状态转移方程不越界

4.确定填表顺序:根据状态转移方程即可确定填表顺序

5.确定返回值

题目链接:LCR 091. 粉刷房子 - 力扣(LeetCode)

题解:

1.状态表示:f[i]表示粉刷到i号房子时,将其粉刷为红色的最少成本
                     g[i]表示粉刷到i号房子时,将其粉刷为蓝色的最少成本
                     h[i]表示粉刷到i号房子时,将其粉刷为绿色的最少成本

2.状态转移方程:f[i]=costs[i][0]+min(g[i-1],h[i-1])
                            g[i]=costs[i][1]+min(f[i-1],h[i-1])
                            h[i]=costs[i][2]+min(f[i-1],g[i-1])

3.初始化:f[0]=costs[0][0]
                 g[0]=costs[0][1]
                 h[0]=costs[0][2]

4.填表顺序:从左向右,三个表一起填

5.返回值:min(min(f[n-1],g[n-1]),h[n-1])  

class Solution {
public:
    int minCost(vector<vector<int>>& costs) {
    //红蓝绿
    //f[i]表示粉刷到i号房子时,将其粉刷为红色的最少成本
    //g[i]表示粉刷到i号房子时,将其粉刷为蓝色的最少成本
    //h[i]表示粉刷到i号房子时,将其粉刷为绿色的最少成本
    //f[i]=costs[i][0]+min(g[i-1],h[i-1])
    //g[i]=costs[i][1]+min(f[i-1],h[i-1])
    //h[i]=costs[i][2]+min(f[i-1],g[i-1])
    
    size_t n=costs.size();
    //处理边界条件
    if(n==1)
        return min(min(costs[0][0],costs[0][1]),costs[0][2]);
    //创建dp表
    vector<int> f(n);
    auto g=f;
    auto h=f;
    //初始化
    f[0]=costs[0][0];
    g[0]=costs[0][1];
    h[0]=costs[0][2];
    //填表
    for(int i=1;i<n;++i)
    {
        f[i]=costs[i][0]+min(g[i-1],h[i-1]);
        g[i]=costs[i][1]+min(f[i-1],h[i-1]);
        h[i]=costs[i][2]+min(f[i-1],g[i-1]);
    }
    //返回值
    return min(min(f[n-1],g[n-1]),h[n-1]);
    }
};

### LeetCode LCR 077 排序链表 #### 题目描述 给定一个未排序的单向链表,返回该链表按升序排列的结果。 #### 解题思路 对于这个问题,可以采用归并排序的思想来解决。具体来说,在处理链表时,可以通过快慢指针找到中间节点,从而将链表分成两部分分别进行排序后再合并这两部分有序链表[^1]。 #### 数据结构与算法分析 此问题主要涉及的数据结构为单向链表。为了有效地对链表进行排序,采用了自底向上或自顶向下两种方式之一来进行归并排序: - **自底向上**:不需要额外空间保存结点位置,通过不断调整步长逐步完成整个列表的排序; - **自顶向下**:利用递归来实现,每次都将当前链表分为大致相等长度的两个子链表直到不能再分为止,之后再依次合并各个已排序的小段形成最终结果[^2]。 下面展示的是基于自顶向下的归并排序的具体代码实现: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def sortList(head: ListNode) -> ListNode: if not head or not head.next: return head # 使用快慢指针寻找链表中点 slow, fast = head, head.next while fast and fast.next: slow = slow.next fast = fast.next.next mid = slow.next slow.next = None # 对前后半部各自排序 left_half_sorted = sortList(head) right_half_sorted = sortList(mid) # 合并已经排好序的部分 dummy_head = tail = ListNode() while left_half_sorted and right_half_sorted: if left_half_sorted.val < right_half_sorted.val: tail.next, left_half_sorted = left_half_sorted, left_half_sorted.next else: tail.next, right_half_sorted = right_half_sorted, right_half_sorted.next tail = tail.next tail.next = left_half_sorted if left_half_sorted is not None else right_half_sorted result = dummy_head.next del dummy_head return result ``` 上述代码实现了完整的链表排序逻辑,其中包含了如何定位链表中心以及怎样高效地执行合并操作等内容[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周丕才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值