动态规划20:918. 环形子数组的最大和

动态规划解题步骤:

1.确定状态表示:dp[i]是什么

2.确定状态转移方程:dp[i]等于什么

3.初始化:确保状态转移方程不越界

4.确定填表顺序:根据状态转移方程即可确定填表顺序

5.确定返回值

题目链接:918. 环形子数组的最大和 - 力扣(LeetCode)

题解:

1.状态表示:f[i]表示以i位置元素为结尾的连续子数组中,最大和连续子数组的元素和

                     g[i]表示以i位置元素为结尾的连续子数组中,最小和连续子数组的元素和

2.状态转移方程:f[i]=max(f[i-1]+nums[i],nums[i])

                            g[i]=min(g[i-1]+nums[i],nums[i])

以i位置元素为结尾的连续子数组有两种情况:一是仅有i位置元素组成一个子数组;二是由i位置元素和前面的元素组成一个子数组

3.初始化:f[0]=nums[0] 根据状态转移方程,以nums[0]为结尾的子数组只有情况一

                 g[1]=nums[1] g表要去除首尾元素初始化,所以初始化的第一个元素是g[1]

4.填表顺序:从左向右填写

5.返回值:f表中最大的元素(即不跨越首尾元素的连续子数组的最大和)和sum-g表中最小元素(即跨越首尾元素的连续子数组的最大和)的较大值

class Solution {
public:
    int maxSubarraySumCircular(vector<int>& nums) {
        //f[i]表示以i位置元素为结尾的所有连续子数组中的最大子数组和
        //g[i]表示以i位置元素为结尾的所有连续子数组中的最小子数组和
        //f[i]=max(f[i-1]+nums[i],nums[i])
        //g[i]=min(g[i-1]+nums[i],nums[i])
        //环形数组中的连续子数组有两种情况:1.不跨越首尾元素2.跨越首尾元素
        //对于不跨越首尾元素的情况只需要按照《最大子数组和》问题求即可
        //对于跨越首尾元素的情况需要反向思考:求不跨越首尾元素情况的最小子数组和,再用总元素和减去
        //比较两种情况,得到最大和
        size_t n=nums.size();
        //处理边界条件
        if(n==1) return nums[0];
        //创建dp表
        vector<int> f(n);
        auto g=f;
        //初始化
        f[0]=nums[0];
        //g[0]=nums[0];
        g[1]=nums[1];
        //填表
        for(int i=1;i<n;++i)
            f[i]=max(f[i-1]+nums[i],nums[i]);
        //有一种特殊情况:如果nums表中全部是负数,那么最小子数组和就是总元素和sum
        //而sum-sum为0,即跨越首尾元素的最大子数组和为0,显然是不正确的
        //所以求最小连续子数组和要去除首尾元素
        for(int i=2;i<n-1;++i)
            g[i]=min(g[i-1]+nums[i],nums[i]);
        //返回值
        int ans1=INT_MIN;
        int ans2=INT_MAX;
        for(auto e:f) if(e>ans1) ans1=e;
        for(auto e:g) if(e<ans2) ans2=e;
        int sum=0;
        for(auto e:nums) sum+=e;
        return max(ans1,sum-ans2);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周丕才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值