生成对抗网络的Wasserstein距离:度量两个概率分布之间距离

本文深入探讨了生成对抗网络(GANs)中的Wasserstein距离,解释了其作为损失函数的优势,以及如何通过Wasserstein GAN(WGAN)解决传统GAN的训练问题。文中详细阐述了Wasserstein距离的概念,WGAN的算法原理,包括1-Lipschitz连续性约束,并提供了代码实例。此外,还讨论了WGAN在图像生成、文本生成等领域的应用,并指出了未来研究方向,如理论优化、应用拓展和模型安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成对抗网络的Wasserstein距离

作者:禅与计算机程序设计艺术

1. 背景介绍

生成对抗网络(Generative Adversarial Network,GAN)是近年来机器学习领域最重要的创新之一。GAN通过训练两个相互竞争的神经网络模型—生成器(Generator)和判别器(Discriminator),从而学习生成接近真实数据分布的样本。这种对抗训练的方式可以让生成器生成出高质量、接近真实数据分布的样本。

传统的GAN模型使用Jensen-Shannon散度作为生成器和判别器之间的损失函数。然而,Jensen-Shannon散度存在一些问题,比如当生成分布和真实分布没有重叠时梯度会消失,导致训练陷入困境。为了解决这一问题,Wasserstein GAN (WGAN)被提出,它使用Wasserstein距离作为生成器和判别器之间的loss函数。

2. 核心概念与联系

2.1 Wasserstein距离

Wasserstein距离,也称为Earth Mover’s Distance (EMD),是度量两个概率分布之间距离的一种方法。

给定两个概率分布PPPQQQ,Wasserstein距离定义为:

W(P,Q)=inf⁡γ∈Γ(P,Q)E(x,y)∼γ[∣∣x−y∣∣]W(P,Q) = \inf_{\gamma \in \Gamma(P,Q)} \mathbb{E}_{(x,y)\sim \gamma}[||x-y||]W(P,Q)=γΓ(P,Q)infE(x,y)γ[∣∣xy∣∣]

其中Γ(P,Q)\Gamma(P,Q)Γ(P,Q)表示所有可能的联合分布γ(x,y)\gamma(x,y)γ(x,y)的集合,其边缘分布为PPPQQQ。直观上来说,Wasserstein距离就是将一个分布变形为另一个分布所需要的最小"工作量"。

与KL散度和JS散度不同,Wasserstein距离是一个真正的度量,满足以下性质:

  1. 非负性:W(P,Q)≥0W(P,Q) \geq 0W(P,Q)0,等号成立当且仅当P=QP=QP=Q
  2. 对称性:W(P,Q)=W(Q,P)W(P,Q) = W(Q,P)W(P,Q)=W(Q,P)
  3. 三角不等式:W(P,R)≤W(P,Q)+W(Q,R)W(P,R) \leq W(P,Q) + W(Q,R)W(P,R)W(P,Q)+W(Q,R)

这些性质使得Wasserstein距离更适合作为GAN的损失函数。

2.2 WGAN

WGAN通过最小化生成器G和判别器D之间的Wasserstein距离来训练GAN,损失函数定义如下:

min⁡Gmax⁡DW(Pg,Pr)\min_G \max_D W(P_g, P_r)GminDmaxW(Pg</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值