- 博客(5)
- 收藏
- 关注
原创 Datawhale AI 蛋白质预测赛道春训营学习优化baselin心得
通过特征工程增强、模型架构升级、类别不平衡处理和计算优化,我成功地将蛋白质内在无序区域预测模型的性能提升了约12%。这一改进不仅体现在量化指标上,也提高了模型的生物学相关性和计算效率。这次优化经历强化了我的理解:结合领域知识(如蛋白质的生物物理特性)与先进机器学习技术(如XGBoost和SMOTE)是解决生物信息学问题的有效途径。而灵活的工程实践(如GPU/CPU自适应、批处理)则确保了模型在实际应用中的可用性。对于所学专业的生物信息学。
2025-04-30 20:56:46
629
原创 Datawhale AI 蛋白质预测赛道春训营学习参赛心得
通过参与这个蛋白质内在无序区域预测比赛,我不仅学习了生物信息学中的序列标注问题,还实践了从数据处理、模型训练到Docker部署的完整机器学习工作流程。更先进的序列建模方法,如Transformer架构生物特定的预训练模型,如ProtBERT和ESM结合结构信息进行多模态预测这些探索不仅能提高IDRs预测性能,还可能为蛋白质功能预测等相关任务带来启发。
2025-04-28 19:11:04
732
原创 R/Rstudio/Rtools安装&配置,以及在vscode搭配jupyter使用
在使用Rstudio期间遇到的一些问题,自己摸索寻找的成功解决方法,现把方法和心得汇总分享出来,参考的相关文章也已在各自对应部分标出
2024-12-30 04:50:38
3303
原创 NVIDIA NeMo 使用体验反馈
NVIDIA NeMo 是一个功能强大且极具潜力的 AI 开发工具。在本次体验中,其模型性能、高度定制化能力以及直观的接口设计都给我留下了深刻的印象。尽管在配置流程、网络访问稳定性以及错误诊断等方面仍有一些可优化的地方,但其提供的强大生态系统和先进技术已经使其成为构建 NLP 和生成式 AI 应用的首选平台之一。期待未来 NeMo 能进一步优化性能,提升用户体验,甚至推出本地化支持和中文语言模型,让更多开发者和企业受益。
2024-12-26 18:39:11
3207
原创 Datawhale AI 夏令营 Task01 学习心得
衷心希望这篇文章能带给你一些启发,激发你探索大模型应用开发的兴趣。让我们一起,用技术的力量,创造更加美好的未来!🌈记住,学习之路没有终点,关键是要享受这个过程。保持谦逊和好奇的心态,大胆尝试,乐于分享,相信你一定能收获属于自己的精彩!如果你喜欢这篇文章,不妨给个赞👍和评论,让我知道你的想法。让我们携手共进,一路同行!祝学习愉快,奥利给!💪。
2024-08-11 16:33:37
914
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人