
基于QT和C++的计算机视觉开发
文章平均质量分 95
涵盖 OpenCV C++ 接口基础使用、形态学操作等传统视觉方法,以及 TensorRT 部署深度学习模型的实战技巧。结合具体案例讲解环境搭建、算法实现到项目集成的流程。
achene_ql
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OpenCV C++图像金字塔和形态学操作
图像金字塔与形态学操作虽属于基础技术范畴,却在众多复杂任务中扮演着不可或缺的角色。图像金字塔通过构建多尺度图像表示,为图像的特征提取、目标检测与图像融合等任务提供了层次化的分析视角;而形态学操作则基于数学形态学理论,利用结构元素对图像进行处理,能够有效实现图像增强、噪声去除、形状分析与特征提取。原创 2025-06-22 08:30:00 · 1050 阅读 · 0 评论 -
OpenCV C++ 边缘检测与图像分割
在图像中,边缘可以看作是局部区域内像素灰度值的不连续性。从数学角度理解,灰度值的变化率在边缘处会出现显著变化。例如,在一幅黑白图像中,从黑色区域过渡到白色区域的边界处,像素灰度值会从较低值突然跃升至较高值,这个过渡区域就是边缘所在之处。原创 2025-06-20 08:30:00 · 1647 阅读 · 0 评论 -
OpenCV C++ 图像平滑和几何变换
在计算机视觉与数字图像处理领域,图像平滑与几何变换是构建复杂图像处理系统的基石。本文将深入剖析 OpenCV C++ 库中图像平滑与几何变换的核心技术。我们不仅会详细解读均值滤波、高斯滤波等平滑方法,以及平移、旋转、仿射变换和缩放等几何操作的原理与公式推导,还会结合具体的函数原型与示例代码,帮助读者快速上手实践。原创 2025-06-19 08:30:00 · 1028 阅读 · 0 评论 -
OpenCV C++ 图像处理教程:灰度变换与直方图分析
在数字图像处理领域,灰度变换与直方图分析是最基础且核心的技术,它们如同 “图像的化妆师”,能够通过调整像素灰度分布显著改善图像视觉效果,为后续的目标检测、图像分割等高级任务奠定基础。无论是校正图像的亮度与对比度,还是从低质量图像中提取有效信息,掌握这些技术都是图像处理从业者的必备技能。原创 2025-06-18 08:30:00 · 2341 阅读 · 0 评论 -
OpenCV C++ 图像处理模块 imgproc 详解
在计算机视觉领域,OpenCV 的图像处理模块imgproc(Image Processing)是开发者处理图像数据的核心工具集。它涵盖了从基础的颜色变换、图形绘制,到复杂的轮廓查找与分析等功能。本文将讲解imgproc模块中各个重要功能的使用方法与细节。原创 2025-06-17 11:25:14 · 998 阅读 · 0 评论 -
OpenCV C++ 核心模块 Core:Mat、Rect 与数组操作
在计算机视觉领域,OpenCV 是开发者们不可或缺的强大工具。而 OpenCV 的核心模块core,更是整个库的基石,它提供了基本的数据结构和算法,为后续复杂的图像处理与分析奠定了基础。本文将深入探讨core模块中最为关键的几个部分:Mat类、Rect类以及常用数组操作。原创 2025-06-17 08:30:00 · 1077 阅读 · 0 评论