kaka_R-Py
你们的小小关注是我创作的动力。--“烦躁的时候千万不要说话,也不要做任何决定,安静的待会,你已经长大了,一些难过的情绪要学会自己消化”。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
解决虚拟环境中文绘图显示问题
在虚拟环境中解决Matplotlib中文显示问题的方案:当在conda、Codespaces或AIStudio等环境中绘图时,无法全局设置中文字体,可采用局部解决方案。方法是将SimHei.ttf文件放入工作目录,通过FontProperties指定字体路径,并在绘图时设置textprops={'fontproperties':myfont}参数。同时需处理图表标题、轴标签和图例的字体设置,并确保负号正常显示。这种方案避免了修改系统字体配置,适用于各种虚拟开发环境。原创 2025-06-15 20:08:40 · 145 阅读 · 2 评论 -
python数据挖掘编程题(@飞桨AI Studio星河社区 @Github Codespace)
摘要:本文包含两个Python编程任务。第一个任务是编写程序读取文本文件,将单词首字母大写后输出到新文件,并统计单词总数。代码展示了文件读写和字符串处理操作。第二个任务使用pandas处理超市营业额数据:2.1找出交易额最小的3天并显示星期几;2.2绘制各柜台营业额占比饼图,包含中文字体设置和数据可视化实现。两个任务分别展示了基础文件处理和数据统计分析的应用。原创 2025-06-13 11:26:32 · 113 阅读 · 0 评论 -
scikit-learn机器学习
机器学习基础与线性回归应用 本文介绍了机器学习的基本概念和线性回归算法的应用。主要内容包括: 机器学习基础概念: 样本、特征向量、目标变量等基本术语 偏差与方差、维度、正则化等关键理论 有监督/无监督学习区别及常见算法 线性回归实践应用: 使用简单线性回归预测儿童身高 岭回归(Ridge)在乳腺癌数据集的分类应用 代码示例展示了数据准备、模型训练和预测过程 核心库介绍: NumPy数组操作 scikit-learn的机器学习功能 文章通过实际案例演示了机器学习模型的构建流程,从数据准备到模型评估。原创 2025-06-06 14:07:18 · 271 阅读 · 1 评论 -
Python数据类型与运算符全解析-Python数据挖掘可视化分析
本文摘要: 第二章主要练习了Python基础数据类型运算,包括整数除法(-68//7=-10)、集合操作(并集|、交集&、差集-)、字符编码转换(chr(ord('0')+3))等内容。 第三章重点练习了Python的四种数据结构: 列表:创建方式(空列表、推导式等)、常用方法(append/extend/insert/remove/pop) 元组:创建方式、不可变性特点、切片操作 字典:多种创建方式、嵌套结构 集合:基本操作(交并差集) 编程题部分包含了对列表的各种操作:计算平均值、排序、位数统计原创 2025-06-05 23:19:05 · 398 阅读 · 1 评论 -
BP神经网络-准确率、查准率、查全率、F1分数评价标准
BP神经网络性能评价标准主要包括准确率、查准率、查全率和F1分数等指标。一般认为,准确率达到80%以上(>0.8)为较好表现,查准率和查全率在0.7-0.9区间较为理想,F1分数高于0.75则表明模型综合性能较好。不同任务需关注不同指标:多分类任务侧重准确率和宏平均指标,回归任务关注MSE/MAE和R²,异常检测更重视查全率,排序任务评估NDCG/MAP,聚类则依赖轮廓系数等。评价标准需结合具体业务场景和数据分布综合判断,0.8以上通常视为良好表现,但高风险场景需更严格标准。原创 2025-07-06 10:45:16 · 72 阅读 · 0 评论 -
神经网络分类问题求解——以鸢尾花为例
摘要:本文实现了一个三层BP神经网络模型,用于处理分类和回归任务。代码包含神经网络初始化、正向传播、误差反向传播等核心算法,支持多特征输入和多目标输出。数据预处理部分实现了特征编码、标准化和数据集划分功能。模型采用tanh作为激活函数,并包含动量因子优化训练过程。测试结果表明该神经网络能够有效处理结构化数据,输出结果符合预期。代码结构清晰,包含完整的训练和测试流程,可作为神经网络基础实现的参考。原创 2025-06-28 16:50:40 · 31 阅读 · 0 评论 -
应用时间序列分析
摘要:本文通过多张图片展示了不同场景下的视觉内容,涵盖自然风光、城市建筑、日常生活等多个主题。这些图像以高品质呈现,部分为全景构图,体现了摄影的多样性和艺术性。每张图片均采用居中排版,清晰度较高,适合用于视觉展示、设计参考或内容插图。图片格式统一,便于读者浏览和对比不同视角的视觉元素。原创 2025-06-23 20:35:01 · 126 阅读 · 0 评论 -
应用时间序列分析期末考试重点知识图谱
1。原创 2025-06-23 20:27:27 · 45 阅读 · 0 评论 -
运筹学期末考试重点
原创 2025-06-22 17:28:37 · 47 阅读 · 0 评论 -
协同过滤算法进行电影推荐
协同过滤算法进行电影推荐原创 2025-06-09 08:54:17 · 52 阅读 · 0 评论 -
SARIMA时间序列分析:三大模型对比
本文探讨了时间序列分析的分解方法与建模技术。首先介绍了乘法模型(X_t=T_t×S_t×I_t),分别展示了趋势效应(T_t)和季节效应(S_t)的图示。随后比较了指数平滑法(X_t=(893.128+1.583t)S_j)和两种SARIMA模型的拟合效果。第一种SARIMA模型(0,1,1)×(0,1,1)12采用差分和移动平均组合,第二种(1,1,0)×(0,1,1)12结合自回归和季节性差分。通过RMSE指标对比显示,指数平滑法(7.665)精度略低于两种SARIMA模型(7.208和7.217)。研原创 2025-06-04 18:05:15 · 169 阅读 · 1 评论 -
工资统计实战:5步搞定数据分析(python数据挖掘)
摘要: 本文包含四个编程练习题,涵盖Python基础知识和数据处理。第一题计算员工工资的平均值、高于平均值的数量及排序;第二题处理学生成绩,统计高分人数、找出最低分学生并连接姓名字符串;第三题管理图书信息,按类别分组、统计数量并处理作者和编号数据;第四题统计兴趣小组报名情况,分析受欢迎的小组并整理学生名单。所有题目均要求使用Python内置函数和数据结构操作,涉及列表、字典、集合等数据类型的处理。原创 2025-05-30 10:30:28 · 273 阅读 · 0 评论 -
第7章-航空公司客户价值分析
本文介绍航空公司客户价值分析的数据处理方法。首先进行描述性统计分析,计算各变量的空值数、最大值和最小值。其次进行分布分析,包括客户基本信息(入会年份、性别比例、会员等级、年龄分布)和乘机信息(最后乘机时长、飞行次数、飞行公里数)的分布特征。最后进行相关性分析,计算会员等级、飞行次数、积分等变量的Pearson相关系数矩阵,并通过热力图直观展示变量间相关性。分析采用Python的pandas、matplotlib和seaborn库实现数据探索和可视化。原创 2025-05-28 19:41:12 · 86 阅读 · 0 评论 -
Matplotlib可视化——三维图与莫比乌斯带可视化
Matplotlib中的三维图绘制:莫比乌斯带的可视化。> 1. 三维的点和线 > 2. 三维轮廓图 > 3. 线框图和曲面图 > 4. 曲面三角形> 举例:莫比乌斯带的可视化原创 2024-10-27 23:40:28 · 246 阅读 · 0 评论 -
第十章-家用热水器用户行为分析与事件识别
摘要: 本章基于家用热水器用水数据,通过数据探索分析发现水流状态记录数分布与流量分布特征。在数据预处理阶段,通过属性归约删除冗余特征,并基于时间阈值划分用水事件,采用斜率指标法确定最佳单次用水时长阈值为4分钟。接着构造用水时长、频率等特征,分析用水停顿事件与洗浴时间点分布。研究结果为后续用水行为分析及事件识别提供了数据基础,有助于优化热水器使用模式识别与节能策略制定。原创 2025-05-28 19:51:15 · 123 阅读 · 0 评论 -
超市营业额数据分析
文章摘要:本文通过Python对超市营业额数据进行分析,主要完成了三项任务。首先,通过汇总交易额,推出了5名销冠员工。其次,分析了新领导上任15天以来的业绩总增长情况,并绘制了超市整体和每位员工的增长率图表,展示了业绩波动。最后,将所有柜台的销售额分为三个等级,进一步细化了销售数据的分类。通过这些分析,为超市的销售策略和员工绩效评估提供了数据支持。原创 2025-05-16 16:36:05 · 249 阅读 · 0 评论 -
Deepseek流式操作与用户行为数据分析day01
Deepseek流式操作与用户行为数据分析day01原创 2025-05-06 16:38:24 · 370 阅读 · 0 评论 -
python读取文件xlrd or openpyxl
【代码】python读取文件xlrd or openpyxl。原创 2025-03-31 16:08:56 · 95 阅读 · 0 评论 -
GTAP地址
GTAP原创 2025-03-25 10:20:52 · 72 阅读 · 0 评论 -
列表表达式
列表表达式(List Comprehensions)在 Python 中是一种简洁且强大的工具,可以用于创建和操作列表。这些示例展示了列表表达式在处理各种复杂操作时的强大功能。你可以根据需要,将这些示例进行调整和扩展,以满足特定需求。原创 2025-03-07 11:00:56 · 57 阅读 · 0 评论 -
文档散+词云图
【代码】文档散+词云图。原创 2025-03-02 12:25:17 · 90 阅读 · 0 评论 -
Python数据分析、挖掘与可视化(慕课版)学习资源包
PPT讲义:详尽的幻灯片内容覆盖了从基础到高级的数据分析概念,帮助你系统地理解和掌握知识。源代码:实践是学习的最佳方式。我们提供了课程中演示的所有案例的源代码,让你能够跟随动手操作,加深理解。数据集:真实世界的数据集用于练习,涵盖各种应用场景,使你能将理论应用于实践,提升解决问题的能力。加入数据分析的学习之旅,开启你的数据洞察之门。这份资源包将伴随你每一步,助你在数据科学的世界里不断前行。祝学习愉快!原创 2025-02-23 17:43:28 · 318 阅读 · 1 评论 -
PyTorch数据建模
【代码】PyTorch数据建模。原创 2025-02-02 15:51:56 · 448 阅读 · 0 评论 -
Python数据分析、挖掘与可视化慕课版第2版学习资料包
1. **解压资源**:首先,你需要下载提供的`Python数据分析、挖掘与可视化(慕课版).rar`压缩文件,并将其解压到本地目录。5. **探索与创新**:在掌握了基本技能后,鼓励大家探索新的数据分析方法,对数据集进行更深入的分析或尝试自己的项目。- **源代码**:实践是学习的最佳方式。- **数据集**:真实世界的数据集用于练习,涵盖各种应用场景,使你能将理论应用于实践,提升解决问题的能力。4. **实战数据集**:用提供的数据集来实践所学的知识,不要害怕犯错,实践是最好的老师。原创 2025-02-23 17:37:24 · 90 阅读 · 0 评论 -
基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析
基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析摘要近年来,随着数字化和信息化的快速发展,越来越多的人开始使用智能手机。文章基于某公司某年连续30天4万多位智能手机用户的监测数据,通过随机森林与RFM聚类分析模型对智能手机用户的监测数据进行挖掘和分析,有效地统计和归纳了用户对于A类APP的使用情况,模型准确度达到了80%,同时对于智能手机APP的开发和使用提出了相应的建议。原创 2025-01-15 16:38:52 · 522 阅读 · 0 评论 -
ROC曲线
它通过在不同阈值下计算模型的真阳性率(True Positive Rate, TPR)和假阳性率(False Positive Rate, FPR)来全面评估分类器的表现,随着机器学习的发展,尤其是在医疗诊断、欺诈检测和金融风险控制等领域,ROC曲线成为衡量分类器性能的标准方法。这里绘制随机森林模型在多分类任务中的ROC曲线,包括每个类别的ROC曲线、宏平均ROC曲线以及随机猜测的参考线,图中还显示了每个类别及宏平均的AUC值,用于评估模型的分类性能,具体解释前文已给出。一般情况下,AUC值可以这样理解。原创 2024-10-05 13:30:56 · 549 阅读 · 0 评论 -
DocuBurst——基于java实现
亚位词的放射状、充满空间的布局(IS-A 关系)通过缩放、筛选和按需详细信息的交互式技术呈现,用于文档可视化任务。C. Collins、S. Carpendale 和 G. Penn,“DocuBurst:使用语言结构可视化文档内容”,计算机图形论坛(Eurographics/IEEE-VGTC 可视化研讨会 (EuroVis) 论文集),第 28 卷,iss.3,第 1039-1046 页,2009 年。文档散(DocuBurst)也是基于关键词的文本可视化,不过它还通过径向布局体现了词的语义等级。原创 2024-11-08 23:43:28 · 275 阅读 · 0 评论 -
文本数据可视化——Python大数据分析可视化
文本数据可视化——Python大数据分析可视化实验目的1. 了解什么是文本可视化2. 掌握文本可视化的相关技术3. 文本信息的提取和可视表达4. 本次实验是将某一文本进行可视化生成词云图片原创 2024-11-08 00:15:13 · 657 阅读 · 0 评论 -
关系数据的可视化——Python大数据可视化
关系数据的可视化实验目的1.掌握关系数据在大数据中的应用2.掌握关系数据可视化方法3. python程序实现图表。原创 2024-11-07 23:55:10 · 643 阅读 · 0 评论 -
机器学习之fetch_olivetti_faces人脸识别--基于Python实现
sklearn.datasets.fetch_olivetti_faces(*, data_home=None, shuffle=False, random_state=0, download_if_missing=True, return_X_y=False, n_retries=3, delay=1.0)[source]Load the Olivetti faces data-set from AT&T (classification).Download it if necessary.Classes4原创 2024-10-29 11:43:24 · 913 阅读 · 0 评论 -
Python数据结构全解析:列表、元组、字典与集合
本文展示了Python中列表、元组、字典和集合的基本用法示例。列表部分演示了创建空列表、不同类型元素列表、列表推导式、列表操作(append、extend、insert、remove、pop)等。元组部分展示了创建元组的不同方式,包括单元素元组、嵌套元组等。字典部分展示了创建字典、字典推导式、字典合并以及常用字典方法(pop、setdefault等)。集合部分介绍了集合创建、元素操作(add、remove、discard等)以及集合运算(并集、交集、差集等)。通过这些示例可以快速掌握Python主要数据结构原创 2025-05-30 10:12:16 · 76 阅读 · 0 评论 -
Python分析假期对美国出生率的影响
此数据来自美国疾病控制和预防中心,并通过 Google 的SELECTFROMGROUP BYORDER BY它被汇总以符合他们的使用条款。数据于 2015 年 6 月 9 日访问。请注意,Andrew Gelman 和他的小组已经对这些数据进行了相当广泛的分析;参见this post(英文)。原创 2024-10-28 22:43:24 · 252 阅读 · 0 评论 -
杰拉德相似度-协同过滤算法
杰拉德相似度(Jaccard Similarity)是一个常用的相似度度量方法,用于比较两个集合之间的相似性。它的公式如下:\[\text{Jaccard Similarity} = \frac{|A \cap B|}{|A \cup B|}\]其中:- \( A \) 和 \( B \) 是两个集合(例如,用户对电影的评分集合)。- \( |A \cap B| \) 是两个集合的交集,表示同时被两个用户评分的电影数量。- \( |A \cup B| \) 是两个集合的并集,表示至少被一个原创 2025-06-09 09:06:18 · 184 阅读 · 0 评论 -
水平交错柱状图——基于Python热狗大胃王比赛数据集
关于Python热狗大胃王比赛数据集,这通常指的是记录热狗大胃王比赛相关数据的信息集合。这些数据可能包括比赛的年份、参赛者的信息、吃下的热狗数量等。原创 2024-10-25 14:38:44 · 433 阅读 · 0 评论 -
Anaconda如何从旧版本更新
从 conda 4.7 开始,当一个包失去与过去请求的规范集的连接时,它会被删除。在 Anaconda 元包的情况下,当你说 但你有 Anaconda 2019.03 时,conda 可以并且应该“降级”Anaconda 到“自定义”版本,以便 iPython 可以更新。当 conda 无法满足对可用最新软件包的请求时,通常意味着存在适用于您的规范的较新软件包但存在冲突。这会将当前环境中的所有包更新到最新版本。当您使用或 时,如果不更改您过去指定的其他内容,conda 可能无法更新或安装该软件包。原创 2024-10-24 23:23:44 · 4742 阅读 · 0 评论 -
时间数据可视化基础实验(南丁格尔玫瑰图)——Python热狗大胃王比赛数据集
1.掌握时间数据在大数据中的应用2.掌握时间数据可视化图表表示3. 利用python程序实现堆叠柱形图的可视化原创 2024-10-22 00:59:17 · 694 阅读 · 0 评论 -
比例数据可视化(Python实现板块层级图绘制)——Instacart Market Basket Analysis
【实验目的】1. 掌握数据文件读取2. 掌握数据处理的方法3. 实现板块层级图的绘制原创 2024-10-22 13:36:33 · 493 阅读 · 0 评论 -
泰坦尼克号生存预测CART-基于Python
【代码】泰坦尼克号生存预测CART-基于Python。原创 2024-10-17 22:35:49 · 133 阅读 · 0 评论 -
Python实现文本数据可视化:构建动态词云
在信息爆炸的时代,如何有效地从海量的文本数据中提取关键信息并直观展示,成为数据分析师和研究人员面临的重要挑战。词云作为一种流行的文本可视化工具,通过不同大小、颜色和字体的文字展示文本中关键词的出现频率或重要性,帮助观众快速把握文本主旨。本文将深入探讨如何使用Python构建动态词云,并结合实际案例展示其应用技巧。原创 2024-10-15 11:38:32 · 657 阅读 · 0 评论 -
TIARA文本可视化
【代码】TIARA文本可视化。原创 2024-10-15 11:33:10 · 94 阅读 · 0 评论