
机器学习
文章平均质量分 96
vv_501
每天都想鼠
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习 朴素贝叶斯、决策树、集成学习方法之随机森林
我们知道分类算法主要用于对进行分类,标签型数据有一下几个特点:无序性、非数值性、多样性。比如“性别”可以分为“男”和“女”,但“男”和“女”之间不存在大小、高低等顺序关系,也不是数值,分类算法就是针对这样的数据。原创 2025-07-02 16:11:08 · 882 阅读 · 0 评论 -
机器学习 KNN算法、模型选择与调优
KNN(K-Nearest Neighbors,K近邻)算法是一种基本的分类方法(也可用于回归),它根据K个邻居样本的类别来判断当前样本的类别,核心原理是。例如: 有10000个样本,选出离样本A的7个“邻居”,然后在这7个样本中假设:类别1有2个,类别2有3个,类别3有2个,那么就可以认为A样本属于类别2,因为在它的7个“邻居”中 类别2最多,用一句古话解释就是:近朱者赤近墨者黑。原创 2025-05-14 16:33:10 · 864 阅读 · 0 评论 -
机器学习 特征工程
在机器学习时,我们获得的原始数据往往会存在以下问题:信息冗余或无关(如无关字段、重复特征);格式不适合模型(如文本、类别数据需要数值化);缺失值或噪声(如数据采集错误);维度灾难(特征过多导致计算效率低)等,所以在对数据集进行进一步操作之前就需要特征工程,即将任意数据(如文本或图像)转换为可用于机器学习的数字特征,原创 2025-05-11 11:04:42 · 885 阅读 · 0 评论