- 博客(45)
- 收藏
- 关注
原创 hadoop全分布式搭建(三台虚拟机,一个主节点,两个从节点)
出现的信息即为压缩包所在地址,如果没有出现可能在桌面/home目录下,或者上传不成功。在windowns系统的浏览器中输入hadoop101的IP:9870,可以看到文件管理。在windowns系统的浏览器中输入hadoop102的IP:8088,可以看到资源管理。进入/opt/module/hadoop-3.2.4/目录,配置环境变量。配置hadoop环境变量,定义hadoop组件以root用户运行。配置hadoop环境变量,定义hadoop组件以root用户运行。将hadoop的包拖入虚拟机。
2024-10-13 23:01:54
2433
1
原创 mysql解压安装包下载
编辑好mysql.ini文件之后,将mysql.ini文件放到安装目录下。mysqladmin -u root -p password 新密码。并在Path中添加:%MYSQL_HOME%\bin。Enter password: 旧密码(回车)
2024-09-25 17:30:31
448
原创 数据库期末复习——简答题
答:把数据的修改写到数据库和把对数据的修改操作写到日志文件是两个不同的操作,在两个操作之间可能会发生故障如果先写了数据库修改,而在日志文件中没有登记这个修改,在恢复的时候就无法恢复这个修改了;多个事务的并发执行的结果与按某一次序串行的执行它们时的结果相同,我们说这样的并发调度是可串行化的调度,如果一个调度是可串行化的,那么认为它是正确的调度。区别:视图是从一个或几个基本表(或视图)中导出的表,是一个虚表,数据库中只存放视图的定义,而不存放视图对应的数据,这些数据仍存放在原来的基本表中。
2024-08-15 22:28:16
989
2
原创 层次分析法
层次分析法——矩阵一致性。来自:【大师兄数学建模】1.评价的目标是什么?2.评价的标准是什么?3.可选方案有哪些?指标在知网等地方查询。
2024-08-14 23:23:39
398
原创 Hadoop基础知识点——填空
Src/main/resources下放的是资源文件(只要不是Java源码文件,都叫资源文件),这个目录看不到,当需要手动创建即可。Src/test/resources下放的也是资源文件,用于测试。Src/main/java下放的是Java源码文件,src/test/java也是源码文件,不过用于测试;在/user目录下创建与操作Hadoop账户名相同的目录:dfs -mkdir /user/root。Src/main下放的是用于构建目标结构的文件。Src/test下放的是用于测试的文件。
2024-08-12 21:48:38
1009
原创 机器学习第一课
特征可以是连续的数值型变量,也可以是离散的分类型变量,还可以是其他类型的变量,例如文本、图像等。在监督学习中,我们需要根据一组已知的特征数据来预测目标变量的值,目标变量可以是连续的数值型变量,也可以是离散的分类型变量。例如,我们想要根据房屋的大小、位置、卧室数量等特征来预测房价,那么房价就是目标变量,而房屋的大小、位置、卧室数量就是特征。我们使用已知的特征和目标变量来训练模型,然后使用该模型对新的特征数据进行预测,从而得到预测结果。有监督学习:有标签(连续变量(回归问题:时间序列等)、分类变量(分类))
2024-08-11 23:24:38
508
原创 数据库原理考试填空题
36.在数据管理技术的发展过程中,经历了人工管理阶段,文件系统阶段和数据库系统阶段,在这几个阶段中,数据的独立性是(71.在关系模型中,若属性A是关系R的主码,则在R的任何元组中,属性A的取值都不允许为空,这种约束称为(9.在SQL语言中,为了数据库的安全性,设置了对数据的存取进行控制的语句,对用户授权使用(100.多个事物在某个调度下的执行是正确的,是能保证数据库一致性的,当且仅当该调度是(46.在数据库的三级模式结构中,描述数据库中的全体数据的全局逻辑结构和特征的是(
2024-08-10 12:56:06
656
原创 116. 填充每个节点的下一个右侧节点指针、117. 填充每个节点的下一个右侧节点指针 II
给定一个,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:int val;Node *left;Node *next;填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为NULL。初始状态下,所有 next 指针都被设置为NULL。给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
2024-08-09 11:48:46
1082
原创 60、排列序列,61、旋转链表——LeetCode
给出集合,其所有元素共有n!种排列。按大小顺序列出所有排列情况,并一一标记,当n = 3给定n和k,返回第k个排列。"213"
2024-08-08 23:28:36
632
原创 隐马尔可夫模型
隐马尔可夫模型(Hidden Markov Model, HMM)是一种时序概率模型,它描述了一个由不可见状态序列(state sequence)所驱动的过程。这些隐藏的状态由一个马尔可夫链随机生成,并且每个状态都对应着一个观测结果。这样,每个状态不仅代表了系统在某一时刻的内在特性,而且决定了在那个时刻可以观测到的随机序列(observation sequence)。
2024-08-08 22:53:19
491
原创 提升树模型
提升树模型是一种基于提升方法的集成学习技术,它使用加法模型和前向分步算法来逐步构建模型。在提升树中,决策树作为基本的分类器,可以是二叉分类树或二叉回归树,具体取决于问题是分类问题还是回归问题。
2024-08-07 16:13:15
620
原创 集成学习:融合多个模型
提高准确性:集成算法通过结合多个模型的预测,通常能够提供比单个模型更高的准确性。增强鲁棒性:集成算法减少了模型对异常值和噪声的敏感性,提高了模型的泛化能力。减少过拟合:通过多样化的模型组合,集成算法降低了过拟合的风险。T_k%28x%29。
2024-08-07 15:38:35
1889
原创 adaboost 提升方法
集成学习:串联(提升方法),并联(随机森林)Adaboost:分类加法模型(更新样本权值,投票权值-由权值误差率决定)提升树:回归加法模型 (更新标签:为上次模型的残差,由平方误差最小原则学得弱分类器)
2024-08-05 18:27:17
436
原创 174.地下城游戏——LeetCode
恶魔们抓住了公主并将她关在了地下城dungeon的。地下城是由m x n个房间组成的二维网格。我们英勇的骑士最初被安置在的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。
2024-08-05 17:48:11
792
原创 java面向对象期末总结
需要注意的是,重写方法时,访问修饰符不能比父类低,返回类型应该与父类相同或其子类,方法名和参数列表必须完全匹配,抛出的异常应该是父类方法可能抛出的异常的子集。父类引用子类对象:如果使用父类类型的引用变量来引用一个子类类型的实例,则可以使用父类和子类中定义的方法和属性,但是如果子类中重写了父类中的某个方法,则实际上会调用子类中的方法。总之,父类引用父类对象时只能调用父类中定义的方法和属性,而父类引用子类对象时可以调用父类和子类中定义的方法和属性(但如果子类中定义了与父类同名的方法,则优先调用子类中的定义)。
2024-08-04 00:41:35
610
原创 比较支持向量机、AdaBoost、逻辑斯谛回归模型的学习策略与算法
适合线性和非线性问题,通过核技巧可以处理非线性分类和回归任务。主要用于分类问题,但也可以应用于回归问题。缺点:对于大规模数据集和特征数量较多的情况可能计算复杂度较高,对参数的选择和核函数的设计敏感。学习算法:提升树算法等,通过逐步提升样本分布的效果来训练每个弱分类器,并逐步更新样本权重。优点:简单、易于理解和实现,计算开销小,适用于线性可分或近似线性可分的情况。缺点:对于非线性数据拟合能力有限,容易受到异常值干扰,无法处理复杂的关系。缺点:对异常值敏感,需要谨慎处理,对噪声干扰较大,训练时间较长。
2024-08-03 16:45:41
570
原创 综述类型论文注意事项
对已发表材料的组织、综合和评价,以及对当前研究进展的考察来澄清问题。文章的第一部分应命名为“引言”,以后的章节题目自拟,最后一部分为“结束语”。引用文献需多于10篇,凡是互联网上的资料、单位内部文件和资料、没有书刊号的论文集、没有正式发表的学位论文、随机的用户指南和使用说明(手册),这些都不能做参考文献。具体如下:专著-M、论文集-C、报纸文章-N、期刊文章-J、学位论文-D、报告-R、标准-S、专利-P,未说明类型的文献-Z。,即所有的竖线全部去掉,横线只留三条即表头的两条线和表格最下面的一条线。
2024-08-03 16:39:53
454
原创 决策树基础
一个属性的信息增益(率)大/Gini指数越小,表明属性对样本的熵减少的能力更强,这个属性使得数 据由不确定性变成确定性的能力越强。优点:易于理解和解释:决策树的结构类似于流程图,可以直观地展示数据是如何被分割的,以及如何根据特征做出决策。数据要求不高:决策树可以处理数值型和类别型数据,不需要复杂的数据预处理。特征重要性评估:可以识别哪些特征对分类结果影响最大,提供特征重要性的信息。处理缺失值:一些算法可以在构建树的过程中处理缺失值。非线性:决策树可以捕捉数据中的非线性关系。多类问题。
2024-07-31 23:45:57
1012
1
原创 Datawhale AI 夏令营 ——Task2
深度学习是一种强大的机器学习技术,它通过使用多层神经网络来学习数据的复杂模式。RNN是一种适合于序列数据的深度学习模型,它能够捕捉时间序列中的动态特征。
2024-07-31 21:21:17
709
原创 双模幂运算Java
给你一个下标从 0 开始的二维数组 variables ,其中 variables[i] = [ai, bi, ci, mi],以及一个整数 target。返回一个由 好下标 组成的数组,顺序不限。
2024-07-31 19:55:38
326
原创 sql实验代码整理:在数据库supermarket上完成下列操作
SELECT sno from salebill where goodsno in(SELECT goodsno FROM goods g join category c on g.categoryno = c.categoryno and categoryname = '咖啡'))AND major = 'MIS'13.分别用子查询与连接查询查询购买了商品编号为“GN003”和“GN0007”的学生学号与姓名。7.查询购买了商品种类为咖啡的各专业的学生人数。8.查询购买各商品种类的各专业的学生人数。
2024-07-30 00:08:55
1204
原创 朴素贝叶斯
朴素贝叶斯是一种基于贝叶斯定理的分类算法,它的核心思想是:在已知某些条件下,预测一个事件发生的概率。在分类问题中,我们通常根据特征来预测一个对象属于哪个类别。朴素贝叶斯之所以“朴素”,是因为它假设所有特征都是相互独立的,这大大简化了概率计算。2.实例假如已知一个人的职业可能是图书管理员或者农民,而已知这两种职业的人数比为:1:20,又根据其他人的口中得到信息,描述此人为图书管理员的概率为0.95,描述此人为农民的概率为0.5。判断此人是图书管理员还是农民?
2024-07-29 23:59:14
282
原创 双指针解决“接雨水”
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。,分别从数组的两端开始遍历,计算每个位置能接住的雨水量。这个问题可以通过双指针的方法来解决。个非负整数表示每个宽度为。
2024-07-29 00:00:21
222
原创 Datawhale AI夏令营task1:AI for Science(AI+药物)
在生物医学领域,siRNA(小干扰RNA)作为一种强大的基因沉默工具,已经在基因功能研究、疾病治疗和药物开发中展现出巨大的潜力。随着第二届世界科学智能大赛的举办,生命科学赛道特别关注siRNA药物的药效预测,这是一个极具挑战性的任务,涉及到生物信息学、计算生物学和机器学习等多个领域。
2024-07-28 23:52:46
478
原创 KNN算法
K值的选择对KNN算法的性能有重要影响。K值太大,模型可能会受到远离新数据点的训练样本的影响,导致欠拟合。使用算法:首先需要输入样本数据和结构化的输出结果, 然后运行k-近邻算法判定输入数据分别属于哪个分类, 最后应用对计算出的分类执行后续的处理。对待分类样本,计算与所有已知样本的距离,获得最近k个样本的标签,“权值最多数”类别为输出待分类样本类别。KNN算法中,距离度量是核心,它决定了如何计算新数据点与训练数据点之间的相似度。KNN算法的决策规则决定了如何根据K个最近邻的已知类别来确定新数据点的类别。
2024-07-28 21:53:31
805
原创 41. 缺失的第一个正数
给你一个未排序的整数数组nums,请你找出其中没有出现的最小的正整数。请你实现时间复杂度为O(n)并且只使用常数级别额外空间的解决方案。3范围 [1,2] 中的数字都在数组中。21 在数组中,但 2 没有。
2024-07-28 20:40:24
313
原创 数据分析之数据收集
放大镜里面搜索股票关键字 - 点击出现的数据 - headers里面有网址。requests 功能get 给定网址和身份 返回给我们数据。headers={'user-agent':'浏览器标识'}其中:403 拒绝 404 网址不存在 500网址崩溃或者错误。注意: 浏览器标识就在刚才找到的网址的下面。如下是:东方财富网,实战-大A股5000+股票实时批量抓取。模块使用方法:数据=模块.功能(参数)自动采集网站上我们需要的数据。url = '网址'爬虫:请求某一个网站的数据。
2024-07-27 22:42:44
665
原创 感知机与对偶算法:基础与应用
感知机是一种线性二分类模型,最早由Rosenblatt在1957年提出。本文将介绍感知机的基本原理、原感知机算法以及其对偶算法。
2024-07-27 17:52:13
981
原创 1.遗传算法
遗传算法(Genetic Algorithm, GA)是一种仿生全局优化算法。模仿生物的遗传进化原理(Darwin’s theory of evolution & Mendel’s law of inheritance),通过选择(Selection)、交叉(Crossover)与变异(Mutation)等操作机制,使种群中个体的适应性(Fitness)不断提高核心思想:物竞天择,适者生存。
2024-07-27 01:09:17
343
原创 1.LINGO编程应用
for(s:e),@sum(s:e),@max(s:e),@min(s:e),@prod(s:e)(阶乘),@size(s),@index(s:ek)(查询序号),@in(s:et)(查询是否存在,返回0,1),@wrap(a,b)(取余,但整除不为0而是除数,例如@wrap(14%7)=7).5 @log(x) 6.@exp(x)(e的x次) 7.@ lgm(x) (以10为底的对数) 8.sign(x)9 smax(x1,x2..xn)(搜寻最大), 10.smain(x)(取余)
2024-07-26 22:33:12
624
原创 数据分析之预测模型
5.数据报告(报告:ppt,word,markdown;可视化:python FilneBI PowerBI)通过对大量数据进行科学分析,从而得出结论,提出建议,辅助决策。4.数据分析(数据分析(业务),数据挖掘(代码+算法))2.收集数据(已知数据或网络爬虫)一元线性回归:y=wx+b。科学的数据分析步骤有哪些?一元线性回归趋势预测。
2024-07-26 20:56:52
323
原创 sklearn调用
在数据科学和机器学习领域,Python 凭借其简洁的语法和强大的库支持,成为了最受欢迎的编程语言之一。而在众多的 Python 机器学习库中,scikit-learn 以其全面的功能、易用性和灵活性脱颖而出。本文将带你深入了解 scikit-learn,探索其核心组件和高级用法,帮助你在机器学习项目中更加得心应手。scikit-learn 是一个基于 Python 的开源机器学习库,建立在 NumPy、SciPy 和 matplotlib 这些科学计算库之上。
2024-07-26 09:22:57
962
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人