边缘和轮廓检测——图像处理、OpenCV应用

轮廓检测和边缘检测的区别

轮廓检测的目标是确定闭合物体的形状,特别是因为对于具有相同颜色强度的连续点,寻找轮廓的方法是确定的,而边缘检测是通过检测颜色强度内的变化来进行的。对整个图像进行边缘检测,而仅对图像内的对象进行轮廓检测。

边缘检测

边缘检测是一种用于定位图像中对象边界的图像处理技术。它是图像处理、图像模式识别和计算机视觉技术的基本步骤之一。边缘检测最流行和广泛使用的算法之一是 Canny 边缘检测器。Canny 边缘检测器是一种立足点检测算子,它使用多阶段算法来检测图像中的各种边缘。其步骤如下:

  1. 使用高斯模糊算法,过滤掉图像。

  2. 在 Sobel 滤波器的帮助下,找出边缘的强度和方向。

  3. 通过应用非极大值抑制来隔离更强的边缘并将它们细化为一条像素宽的线。

  4. 使用滞后来隔离最简单的边缘。

首先,安装依赖库,例如opencv等

pip3 install opencv-python matplotlib numpy

打开一个 编译器,导入使用到的库

import cv2
import numpy as np
import matplotlib.pyplot as plt

现在为了检测它的边缘,我们必须读取图像

# read the image
image = cv2.imread("little_flower.jpg")

将图像转换为灰度

# convert it to grayscale
gray = cv2.cvtColor(image, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值