给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1] 输出:1
/*思路:
* 初始化:设置左右指针分别指向数组首尾,结果初始化为0
循环计算:当左指针小于右指针时循环执行:
计算当前指针位置的盛水量:min(height[R], height[L]) * (R - L)
盛水高度由较短的壁决定
盛水宽度是两个指针之间的距离
更新最大盛水量:result = max(result, area)
移动指针:总是移动指向较短壁的指针(因为移动较长壁不可能得到更大的盛水量)
*/
int maxArea(vector<int>& height) {
int L = 0;//代表第一个元素的下标
int R = height.size() - 1;//代表最后一个元素的下标
int result = 0;//返回最终结果
int area = 0;//代表水量
while (L < R)
{
area = min(height[R], height[L]) * (R - L);//求出水量
result = max(result, area);
if (height[L] < height[R]) {
L++;
}
else
{
R--;
}
}
return result;