
学习
文章平均质量分 79
初窺门径
失败并不可怕,可怕的是你相信这句话
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
VGG19损失函数——感知损失
例如,VGG-19网络中的卷积层可以提取图像的纹理和结构信息,而网络的全连接层可以提取图像的语义信息。感知损失的计算方式通常是将输入图像和目标图像分别通过预训练的神经网络,得到它们在网络中的特征表示。与传统的均方误差损失函数(Mean Square Error,MSE)相比,感知损失更注重图像的感知质量,更符合人眼对图像质量的感受。其中,x 是输入图像,y 是目标图像,Fi(x) 和 Fi(y) 分别表示它们在预训练的神经网络中的第 i 层的特征表示,N 是特征层数。转载 2024-09-06 17:53:08 · 1354 阅读 · 1 评论 -
本地下载预训练模型(resnet/densenet/vgg等url地址)
多种预训练模型原创 2024-07-15 20:55:12 · 1045 阅读 · 0 评论 -
图解transformer中的自注意力机制(备忘)
注意力机制(attention mechanism)是Transformer模型中的重要组成部分。Transformer是一种基于自注意力机制(self-attention)的神经网络模型,广泛应用于自然语言处理任务,如机器翻译、文本生成和语言模型等。本文介绍的自注意力机制是Transformer模型的基础,在此基础之上衍生发展出了各种不同的更加高效的注意力机制,所以深入了解自注意力机制,将能够更好地理解Transformer模型的设计原理和工作机制,以及如何在具体的各种任务中应用和调整模型。原创 2023-12-11 13:59:12 · 1206 阅读 · 0 评论 -
预训练、微调和上下文学习(备忘)
语言模型通过预训练、微调和上下文学习的结合来学习。预训练捕获一般的语言理解,微调专门针对特定任务的模型,而上下文学习包含特定任务的指令以提高性能。理解这些方法可以深入了解语言模型学习过程中涉及的不同阶段和技术,从而使它们能够有效地应用于各种自然语言处理任务。文章出处,如侵吾删。原创 2023-12-11 13:52:23 · 721 阅读 · 0 评论 -
数据科学工作的20个Pandas函数(备忘)
以上这20个pandas函数,绝对可以帮助我们万行80%以上的任务,我们这里只是简单的总结,想group,merge等参数比较多并且常用的函数可以通过pandas的文档进一步熟悉,这将对我们的工作有很大的帮助。原创 2023-12-11 13:41:15 · 832 阅读 · 0 评论 -
XGBoost和LightGBM时间序列预测对比(备忘)
xgboost 和 LightGBM 都是优秀的梯度提升框架,它们各自具有一些独特的优点和缺点,选择哪一种算法应该根据实际应用场景和数据集的特征来决定。如果数据集中缺失值较多,可以选择 xgboost。如果需要处理大规模数据集并追求更快的训练速度,可以选择 LightGBM。如果需要解释模型的特征重要性,xgboost 提供了更好的特征重要性评估方法,并且如果需要更加鲁棒的模型,可以优先选择xgboost。原创 2023-12-11 13:48:42 · 1535 阅读 · 0 评论