sklearn-线性回归

一、sklearn-线性回归介绍

sklearn(Scikit-learn)是Python中用于机器学习的一个非常流行的库,它提供了大量的算法和工具来构建和评估模型。线性回归是统计学中用于预测一个或多个自变量(特征)和一个因变量(目标)之间线性关系的方法。回归是一种应用广泛的预测建模技术,这种技术的核心在于预测的结果是连续型变量。在sklearn中,线性回归可以通过LinearRegression类来实现。

二、线性回归

1.一元线性回归

一元线性回归模型是统计学中用于预测一个因变量(通常表示为y)和一个自变量(通常表示为x)之间线性关系的模型。这种模型可以表示为数学方程:
y = β 0 ​ + β 1 ​ x + ϵ y=β 0 ​ +β 1 ​ x+ϵ y=β0​+β1​x+ϵ

其中:

  • y 是因变量(目标变量),是我们想要预测的。
  • x 是自变量(特征),是我们用来预测y的。
  • β0 是截距项(intercept),也称为常数项或y轴上的截点。
  • β1 是斜率(slope),表示x每增加一个单位时,y平均增加(或减少,如果β1是负数)的单位数。
  • ε 是误差项(error term),表示除线性因素外随机因素所产生的误差。

2.多元线性回归模型

多元线性回归模型(Multiple Linear Regression Model),它包含两个或更多个自变量以及一个因变量。

多元线性回归模型可以表示为以下数学方程:
y = β 0 ​ + β 1 ​ x 1 ​ + β 2 ​ x 2 ​ + ⋯ + β n ​ x n ​ + ϵ y=β 0 ​ +β 1 ​ x 1 ​ +β 2 ​ x 2 ​ +⋯+β n ​ x n ​ +ϵ y=β0​+β1​x1​+β2​x2​+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值