文章目录
一、sklearn-线性回归介绍
sklearn(Scikit-learn)是Python中用于机器学习的一个非常流行的库,它提供了大量的算法和工具来构建和评估模型。线性回归是统计学中用于预测一个或多个自变量(特征)和一个因变量(目标)之间线性关系的方法。回归是一种应用广泛的预测建模技术,这种技术的核心在于预测的结果是连续型变量。在sklearn中,线性回归可以通过LinearRegression类来实现。
二、线性回归
1.一元线性回归
一元线性回归模型是统计学中用于预测一个因变量(通常表示为y)和一个自变量(通常表示为x)之间线性关系的模型。这种模型可以表示为数学方程:
y = β 0 + β 1 x + ϵ y=β 0 +β 1 x+ϵ y=β0+β1x+ϵ
其中:
- y 是因变量(目标变量),是我们想要预测的。
- x 是自变量(特征),是我们用来预测y的。
- β0 是截距项(intercept),也称为常数项或y轴上的截点。
- β1 是斜率(slope),表示x每增加一个单位时,y平均增加(或减少,如果β1是负数)的单位数。
- ε 是误差项(error term),表示除线性因素外随机因素所产生的误差。
2.多元线性回归模型
多元线性回归模型(Multiple Linear Regression Model),它包含两个或更多个自变量以及一个因变量。
多元线性回归模型可以表示为以下数学方程:
y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n + ϵ y=β 0 +β 1 x 1 +β 2 x 2 +⋯+β n x n +ϵ y=β0+β1x1+β2x2+