函数的嵌套调用
在调用一个函数的过程中又调用了另一个函数
函数的递归
直接递归调用
一个函数自己调用自己
间接递归调用
多个函数互相调用
特别注意:递归设计时一定要有出口,即要满足递归终止条件,否则无限次的调用
函数递归设计步骤:
①分析问题
②写出关于这个问题的分段函数(这步极为重要)
③编写代码
1、利用递归求n!
#include <stdio.h>
int factorial(int n) {
// 设置递归终止条件
if (n == 1) {
return 1;
}
return n * factorial(n - 1);
}
int main() {
int n;
// 输入 n
scanf("%d", &n);
// 计算 n!
int result = factorial(n);
// 打印结果
printf("n! = %d\n", result);
return 0;
}
2、求斐波那契数列的第 n 项
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每
一项数字都是前面两项数字的和。也就是
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
①代码如下:
#include <stdio.h>
int fib(int n) {
// 递归终止条件
if (n == 1 || n == 2) {
return 1;
}
return fib(n - 1) + fib(n - 2);
}
int main() {
int n;
// 输入n的值
scanf("%d", &n);
// 计算
int result = fib(n);
// 打印结果
printf("F(%d) = %d", n, result);
return 0;
}
注:会发现当n的值较大时,计算计算会很慢,那是因为在递归计算时,将每一项都重复计算了很多遍,为了使程序运行效率提高,我们可以定义一个数组,将已经计算过的值存入其中,用时取出即可
②代码如下
#include <stdio.h>
int str[100] = { 0 };
int fib(int n) {
// 递归终止条件
if (n == 0) {
return 0;
}
if (n == 1 || n == 2) {
str[n] = 1;
}
if (str[n] == 0) {
str[n] = fib(n - 1) + fib(n - 2);
}
return str[n];
}
int main() {
while (1) {
int n;
// 输入n的值
scanf("%d", &n);
// 计算
int result = fib(n);
// 打印结果
printf("F(%d) = %d\n", n, result);
}
return 0;
}