
pytorch
文章平均质量分 64
pytorch
wow_DG
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Pytorch✨】LSTM06 数列预言家:LSTM帮你算出下一个数
本文介绍了使用LSTM模型预测等差数列下一个数字的完整流程。通过构造1-10的等差数列,采用滑动窗口方法生成训练数据(前3个数为输入,第4个数为标签)。模型由LSTM层和全连接层组成,使用PyTorch实现,包括数据预处理、模型定义、训练和评估等步骤。训练过程中详细说明了前向传播、损失计算、反向传播和参数更新的机制。最后,模型可进入推理模式,根据用户输入的3个连续数字预测下一个数值。整个过程展示了LSTM处理简单序列预测任务的基本方法,为更复杂的时序预测问题奠定了基础。原创 2025-08-06 16:35:49 · 769 阅读 · 0 评论 -
【Pytorch✨】LSTM05 实现与参数解析
本文介绍了PyTorch中LSTM的基本实现和关键参数,包括input_size、hidden_size、num_layers和batch_first的作用。针对新手常见错误,如输入维度不匹配、隐藏状态尺寸错误、batch_first设置不当等问题,提供了具体解决方案。详细解析了LSTM的三个输出:输出序列output(全序列隐藏状态)、最终隐藏状态h_n(最后一层状态)和最终细胞状态c_n(长期记忆),并对比了它们的形状和应用场景。特别强调了维度顺序在不同batch_first设置下的差异,以及如何正确初原创 2025-08-06 08:30:00 · 1240 阅读 · 0 评论 -
【Pytorch✨】LSTM04 l理解长期记忆和短期记忆
LSTM中的长期记忆(C_t)和短期记忆(h_t)具有不同特点:C_t是细胞状态,通过遗忘门和输入门进行加法更新,能够长期保留信息;h_t是隐藏状态,经过tanh压缩和输出门控制,具有即时性,反映当前时刻的精华信息。C_t类似长期记忆库,h_t则像当前可表达的内容。两者协同工作,C_t负责跨时间步信息传递,h_t专注当前状态输出。原创 2025-08-04 22:01:06 · 778 阅读 · 0 评论 -
【Pytorch✨】LSTM03 三大门
遗忘门:不重要的过去,忘掉!输入门:重要的新事,记住!输出门:现在该告诉外面的人什么?原创 2025-08-04 21:36:36 · 289 阅读 · 0 评论 -
【Pytorch✨】LSTM属于正向传播还是反向传播?
本文对比了神经网络中的正向传播和反向传播过程。正向传播通过线性变换和激活函数从输入层逐层计算得到预测结果,类似学生考试作答;反向传播则根据预测误差,利用链式法则计算梯度并更新参数,如同老师批改讲解。LSTM单元在两种传播中都发挥作用:正向传播时处理序列数据并更新记忆状态,反向传播时计算各门结构的梯度来优化参数。两种传播方向相反但协同工作,共同推动神经网络的训练与优化。原创 2025-08-07 00:15:00 · 393 阅读 · 1 评论 -
⭐Linux 常用命令⭐
本文整理了Linux常用命令速查表,分为八大类:1)文件与目录操作(ls/cd/rm等);2)文件内容查看(cat/less/grep等);3)压缩解压(tar/zip/gzip);4)文件搜索处理(find/awk/sed);5)系统管理(top/df/free);6)网络相关(ping/curl/wget);7)权限管理(chmod/sudo);8)软件包管理(apt/dpkg)。每个命令均配有简明示例,涵盖日常文件操作、系统监控、网络配置等场景,适合快速查阅使用。原创 2025-08-04 11:39:28 · 172 阅读 · 0 评论 -
【LSTM✨】深度学习为啥“记不住”?这篇文章教你 LSTM 的来龙去脉
本文介绍了深度学习处理时间序列数据的核心概念和方法。时间序列数据通常表示为三维张量[batch_size, sequence_length, feature_dim],包含批处理、时间步和特征三个维度。传统机器学习模型无法处理时间顺序和依赖性,因此需要使用RNN、LSTM等时序模型。RNN通过隐状态传递记忆信息,但存在梯度消失和短期记忆问题。LSTM通过遗忘门、输入门和输出门等门控机制,选择性记忆和遗忘信息,解决了RNN的长期依赖问题。原创 2025-08-04 11:08:02 · 1256 阅读 · 0 评论 -
【Pytorch✨】神经网络训练分类器
本文介绍了使用PyTorch训练CIFAR10图像分类器的完整流程:1)加载并归一化CIFAR10数据集;2)构建包含卷积层、池化层和全连接层的CNN网络;3)定义交叉熵损失函数和SGD优化器;4)进行模型训练并输出损失值;5)在测试集上评估模型性能。文中提供了数据可视化代码、网络结构定义、训练循环实现以及测试结果展示,并记录了训练过程中的错误解决方案。整个流程展示了从数据预处理到模型训练测试的完整深度学习项目实现。原创 2025-08-04 14:30:00 · 154 阅读 · 0 评论 -
【PyTorch✨】LSTM02 相关的 Tensor 内置方法
本文介绍了PyTorch中常用的张量操作和LSTM相关函数: unsqueeze(dim)在指定维度插入大小为1的新维度 permute(*dims)调整张量维度顺序 view(*shape)改变张量形状并共享数据 contiguous()确保内存连续以便后续操作 LSTM的标准输出格式为(output, (h_n, c_n)),分别表示输出序列和最终隐藏/细胞状态。这些操作在处理序列数据时非常实用,特别是维度变换和LSTM的输出处理。原创 2025-08-03 08:00:00 · 298 阅读 · 0 评论 -
【PyTorch✨】OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
OpenMP库冲突导致程序报错,解决方案分两种:临时方法是在运行Python脚本前设置环境变量KMP_DUPLICATE_LIB_OK=TRUE(可通过代码或命令行设置);彻底方法是保留torch库中的libiomp5md.dll文件,移除其他位置的同名文件。两种方案均可解决多OpenMP运行时库加载导致的冲突问题。原创 2025-08-02 23:12:24 · 258 阅读 · 0 评论 -
【Pytorch✨】LSTM01 入门
LSTM(长短期记忆网络)是一种特殊的循环神经网络,通过门控机制有效处理时序数据。它能选择性记忆重要信息,适用于文本生成、语音识别、时间序列预测等任务。LSTM核心包含遗忘门(决定保留多少旧记忆)、输入门(控制新信息写入)和输出门(调节当前记忆输出)。输入数据为三维张量[batch_size, seq_len, input_size],输出为预测值。其独特结构解决了传统RNN的长期依赖问题,通过维护细胞状态实现信息的有选择传递,在时间步间传递隐藏状态和记忆状态,完成序列建模。原创 2025-08-02 19:42:00 · 330 阅读 · 0 评论 -
【PyTorch✨】01 初识PyTorch
PyTorch是一个开源的动态图深度学习框架,与TensorFlow 1.x的静态图机制形成鲜明对比。静态图需要预先定义完整计算流程,执行效率高但灵活性差;而动态图允许运行时逐步构建计算图,便于调试和修改。通过烹饪类比:静态图像严格遵守固定菜谱,动态图像边做菜边调整步骤。代码示例显示,TensorFlow 1.x需先构建完整计算图再执行,PyTorch则可实时计算并自动求导。动态图机制使PyTorch在研究和快速迭代场景中更具优势。原创 2025-08-01 19:00:00 · 558 阅读 · 0 评论