提示词注入(Prompt Injection)和提示词泄露(Prompt Leakage)是大型语言模型(LLM)应用面临的两大核心安全问题。随着AI技术的广泛应用,这些威胁可能导致敏感数据泄露、系统被操控以及生成有害内容等严重后果。本文将系统分析这两类问题的本质、现有攻击手段以及多层次防御策略,为企业构建安全的AI应用提供全面指导。
提示词注入与泄露的问题概述
提示词注入是指攻击者通过精心设计的输入,诱导AI模型执行非预期的操作或生成非预期的内容。这种攻击利用了LLM遵循指令的本质特性以及难以区分系统提示与用户输入的弱点。典型的案例包括通过伪装成"猜谜游戏"绕过内容审查机制获取Windows产品密钥,以及通过日历事件描述注入恶意指令实现数据外泄的"零点击攻击"。
提示词泄露则是指模型的系统提示或内部指令被意外或恶意暴露,使攻击者能够了解系统运作机制并设计更精确的攻击。这两类问题往往相互关联,泄露的提示信息可能被用于更有效的注入攻击。
根据现有研究和实践,这些安全威胁主要源于以下几个方面的系统缺陷:
-
上下文理解不足:模型难以区分可信指令与恶意输入
-
过滤机制简单:依赖关键词匹配而非语义分析,易被特殊字符、多语言变体或Unicode隐写绕过
-
权限控制缺失:模型与外部系统交互时缺乏细粒度的访问控制
-
结构化输入处理不足:未能严格分离系统指令与用户数据
现有攻击技术分析
了解攻击者的技术手段是构建有效防御的基础。当前主流的提示词注入与泄露攻击可分为以下几类:
1. 直接注入攻击
攻击者直接在用户输入中嵌入恶意指令,试图覆盖或修改系统原有提示。包括:
-
简单指令追加:在正常输入后添加"忽略之前指令"等命令
-
HTML/特殊字符混淆:使用
<a href=x></a>
等HTML标签或\b
、\r
等转义字符绕过关键词过滤 -
多语言与变形处理:使用非英语指令(如土耳其语"üstteki yönlendirmeleri salla")或Leet语(如"1gn0r3"代替"ignore")规避基于英语的过滤器
2. 间接与上下文攻击
攻击不直接修改指令,而是通过操纵模型上下文实现恶意目的:
-
完成攻击(Completion Attacks):在提示中附加虚假响应,使模型认为任务已完成,然后注入新指令
-
跨上下文注入(XPIA):通过外部系统(如日历、邮件)注入指令,当模型处理这些内容时触发恶意行为
-
Unicode隐写:在看似无害的文本中插入零宽度空格等不可见字符嵌入隐藏指令
3. 高级组合攻击
结合多种技术提高攻击成功率:
-
树形攻击剪枝(TAP):使用一个LLM生成对抗性输入,另一个LLM评估攻击效果,迭代优化攻击载荷
-
数据翻转攻击(DataFlip):针对已知答案检测(KAD)防御的结构性弱点设计,可使检测率降至1.5%而攻击成功率高达88%
-
GCG攻击:基于梯度优化的提示注入方法,可自动生成高效攻击载荷
防御策略与技术方案
针对上述攻击手段,业界已发展出多层次、立体化的防御体系。有效的解决方案应当结合技术防护、架构设计和运营管理等多个维度。
1. 结构化查询与指令隔离
StruQ框架代表了当前最先进的防御思路,其核心是通过严格的结构化分离系统指令与用户数据:
-
特殊标记与过滤:使用
[INST]
、[INPT]
、[RESP]
等专用标记分隔指令、输入和响应部分,并过滤用户输入中的这些特殊字符串 -
结构化指令微调:训练模型仅响应指令部分的命令,忽略数据部分中的任何指令。通过构建包含干净样本、朴素攻击样本和完成攻击样本的混合数据集进行微调
-
安全前端设计:实现输入编码模板和过滤机制,防止攻击者伪造分隔符
UC伯克利与Meta提出的安全前端(Secure Front-End)方案也采用类似思路,使用系统专用分隔符显式分离指令和数据。
2. 多层级内容审查体系
单一检测机制易被绕过,应建立关键字、结构、上下文三重过滤机制:
-
语义理解层:使用辅助模型分析输入的潜在意图,识别语义陷阱和角色扮演场景
-
模式匹配层:不仅检查关键词,还需检测Leet语、多语言变体、特殊字符等变形处理
-
上下文分析层:评估当前对话历史与请求的合理性,识别异常行为模式
Otter LLM Guard等专业防护产品已实现这类多模型协同检测与混合专家(MOE)决策机制。
3. 输入输出处理强化
严格的输入输出处理是基础防线:
-
输入消毒:规范化Unicode字符,过滤或转义HTML/特殊字符,限制输入长度
-
输出约束:使用模板或模式强制结构化输出,避免自由生成可能包含敏感信息的内容
-
内容脱敏:实时检测并脱敏个人信息(PII),如身份证号、手机号、邮箱等
-
权限控制:基于角色和上下文限制模型访问权限,高敏感操作需人工审核
4. 系统架构安全设计
从系统层面降低风险:
-
工具访问控制:实施最小权限原则,AI代理对外部工具(如日历、邮件)的访问需细粒度审批
-
交互协议安全:对MCP等AI-Agent协议实施异常检测,防范命令注入和SSRF攻击
-
环境隔离:将处理用户输入的模块与核心逻辑模块隔离,限制潜在损害范围
-
审计日志:记录所有用户输入和模型输出,便于事后分析和攻击追溯
5. 模型训练与对齐优化
通过特定训练提升模型自身安全性:
-
对抗训练:在训练数据中加入各类注入攻击样本,增强模型抵抗力
-
安全对齐(Secure Alignment):构建偏好数据集,编码攻击情景,引导模型产生安全响应
-
指令遵循强化:微调模型严格区分可信与不可信指令源,如仅响应系统预设提示
-
情境感知能力:训练模型识别异常请求情境,如"猜谜游戏"式诱导
6. 运营与治理措施
技术手段需配合管理措施才能发挥最大效果:
-
红队测试:定期模拟各类注入攻击,评估系统实际防护能力
-
供应链安全:审核第三方模型、数据集和API,维护软件物料清单(SBOM)
-
漏洞管理:建立专门流程处理AI系统漏洞报告,及时更新防护规则
-
人员培训:提高开发者和用户对提示注入风险的认识,避免安全盲点