自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 【Python训练营打卡】day55 @浙大疏锦行

我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我们把这个任务称之为序列预测。举个例子,比如有过去30天的股票价格,我们希望预测第31天的价格。比如之前的单车预测,有前60天的单车需求数据,希望预测后面20天的销量。或者文本,人的语言是有顺序的,预测下一个单词是这也是序列预测任务。

2025-06-20 18:02:56 871

原创 【Python训练营打卡】day54 @浙大疏锦行

Inception 网络,也被称为 GoogLeNet,是 Google 团队在 2014 年提出的经典卷积神经网络架构。其核心设计理念是 “并行的多尺度融合”,通过在同一层网络中使用多个不同大小的卷积核(如 1×1、3×3、5×5)以及池化操作,从不同尺度提取图像特征,然后将这些特征进行融合,从而在不增加过多计算量的情况下,获得更丰富的特征表达。Inception 模块是 Inception 网络的基本组成单元。在同样的步长下,卷积核越小,下采样率越低,保留的图片像素越多;

2025-06-16 15:50:12 849

原创 【Python训练营打卡】day53 @浙大疏锦行

DAY 53对抗生成网络知识点回顾:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。

2025-06-15 16:13:02 583

原创 【Python训练营打卡】day52 @浙大疏锦行

DAY 52 神经网络调参指南知识点回顾:1.随机种子2.内参的初始化3.神经网络调参指南a.参数的分类b.调参的顺序c.各部分参数的调整心得作业:对于day41的简单cnn,看看是否可以借助调参指南进一步提高精度。

2025-06-13 14:40:43 959

原创 【Python训练营打卡】day51 @浙大疏锦行

DAY 51 复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高。

2025-06-12 11:03:22 983

原创 【Python训练营打卡】day50 @浙大疏锦行

DAY 50 预训练模型+CBAM模块知识点回顾:1.resnet结构解析2.CBAM放置位置的思考3.针对预训练模型的训练策略a.差异化学习率b.三阶段微调作业:1.好好理解下resnet18的模型结构2.尝试对vgg16+cbam进行微调策略。

2025-06-11 22:45:56 781

原创 【Python训练营打卡】day49 @浙大疏锦行

cbam注意力之前我们介绍了se通道注意力,我们说所有的模块本质上只是对特征进一步提取,今天进一步介绍cbam注意力CBAM 是一种能够集成到任何卷积神经网络架构中的注意力模块。它的核心目标是通过学习的方式,自动获取特征图在通道和空间维度上的重要性,进而对特征图进行自适应调整,增强重要特征,抑制不重要特征,提升模型的特征表达能力和性能。简单来说,它就像是给模型装上了 “智能眼镜”,让模型能够更精准地看到图像中关键的部分。

2025-06-10 15:17:00 650

原创 【Python训练营打卡】day48 @浙大疏锦行

DAY 48 随机函数与广播机制知识点回顾:1.随机张量的生成:torch.randn函数2.卷积和池化的计算公式(可以不掌握,会自动计算的)3.pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可。

2025-06-09 10:57:06 707

原创 【Python训练营打卡】day47 @浙大疏锦行

DAY 47 注意力热图可视化昨天代码中注意力热图的部分顺移至今天知识点回顾:热力图作业:对比不同卷积层热图可视化的结果续昨天的代码这个注意力热图是通过构子机制:register_forward_hook 捕获最后一个卷积层(conv3)的输出特征图。热力图(红色表示高关注,蓝色表示低关注)半透明覆盖在原图上。可以帮助解释。

2025-06-08 22:01:40 251

原创 【Python训练营打卡】day46 @浙大疏锦行

知识点回顾:1. 不同CNN层的特征图:不同通道的特征图2. 什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。3. 通道注意力:模型的定义和插入的位置4. 通道注意力后的特征图和热力图内容参考作业:1. 今日代码较多,理解逻辑即可注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。Transformer 中的叫做自注意力机制,它是一种自己学习自己的机制,可以自动学习到图片中的主体,并忽略背景。我们现在

2025-06-07 17:27:43 1523

原创 【Python训练营打卡】day45 @浙大疏锦行

DAY 45 Tensorboard使用介绍知识点回顾:1.tensorboard的发展历史和原理2.tensorboard的常见操作3.tensorboard在cifar上的实战:MLP和CNN模型效果展示如下,很适合拿去组会汇报撑页数:作业:对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。

2025-06-06 15:25:50 830

原创 【Python训练营打卡】day44 @浙大疏锦行

模型年份提出团队关键创新点层数参数量ImageNet Top-5 错误率典型应用场景预训练权重可用性LeNet-51998Yann LeCun 等首个 CNN 架构,卷积层 + 池化层 + 全连接层,Sigmoid 激活函数7~60KN/A手写数字识别(MNIST)无(历史模型)AlexNet2012Alex Krizhevsky 等ReLU 激活函数、Dropout、数据增强、GPU 训练860M15.3%大规模图像分类。

2025-06-05 21:32:24 864

原创 【Python训练营打卡】day43 @浙大疏锦行

kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化。进阶:并拆分成多个文件。DAY 43 复习日。

2025-06-04 18:02:39 166

原创 【Python训练营打卡】day42 @浙大疏锦行

DAY 42 Grad-CAM与Hook函数知识点回顾1.回调函数2.lambda函数3.hook函数的模块钩子和张量钩子4.Grad-CAM的示例作业:理解下今天的代码即可。

2025-06-02 11:24:05 699

原创 【Python训练营打卡】day41 @浙大疏锦行

DAY 41简单CNN知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层2.Flatten -> Dense (with Dropout,可选) -> Dense (Output)这里相关的概念比较多,

2025-06-01 22:01:20 918

原创 【Python训练营打卡】day40 @浙大疏锦行

批量维度不变性:无论进行 flatten、view 还是 reshape 操作,第一个维度batch_size通常保持不变。动态维度指定:使用-1让 PyTorch 自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。@浙大疏锦行。

2025-05-31 22:33:35 935

原创 【Python训练营打卡】day39 @浙大疏锦行

从这里开始我们进入到了图像数据相关的部分,也是默认你有之前复试班计算机视觉相关的知识,但是一些基础的概念我仍然会提。昨天我们介绍了minist这个经典的手写数据集,作为图像数据,相较于结构化数据(表格数据)他的特点在于他每个样本的的形状并不是(特征数,),而是(宽,高,通道数)# 先继续之前的代码from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具。

2025-05-30 23:02:27 632

原创 【Python训练营打卡】day38 @浙大疏锦行

DAY 38 Dataset和Dataloader类知识点回顾:1.Dataset类的__getitem__和__len__方法(本质是python的特殊方法)2.Dataloader类3.minist手写数据集的了解作业:了解下cifar数据集,尝试获取其中一张图片在遇到大规模数据集时,显存常常无法一次性存储所有数据,所以需要使用分批训练的方法。为此,PyTorch提供了DataLoader类,该类可以自动将数据集切分为多个批次batch,并支持多线程加载数据。

2025-05-28 22:40:37 941

原创 【Python训练营打卡】day37 @浙大疏锦行

DAY 37 早停策略和模型权重的保存知识点回顾:1.过拟合的判断:测试集和训练集同步打印指标2.模型的保存和加载a.仅保存权重b.保存权重和模型c.保存全部信息checkpoint,还包含训练状态3.早停策略作业:对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略训练集的loss在下降,但是有可能出现过拟合现象:模型过度学习了训练集的信息,导致在测试集上表现不理想。所以很自然的,我们想同步打印测试集的loss,以判断是否出现过拟合现象。

2025-05-27 22:21:56 644

原创 【Python训练营打卡】day36 @浙大疏锦行

对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。:尝试进入nn.Module中,查看他的方法。探索性作业(随意完成)DAY 36 复习日。

2025-05-26 21:29:06 125

原创 【Python训练营打卡】day35 @浙大疏锦行

DAY 35 模型可视化与推理知识点回顾:1.三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化2.进度条功能:手动和自动写法,让打印结果更加美观3.推理的写法:评估模式作业:调整模型定义时的超参数,对比下效果。选择调整隐藏层:增加了隐藏层神经元数量(从10到24)

2025-05-25 22:56:23 582

原创 【Python训练营打卡】day34 @浙大疏锦行

DAY 34 GPU训练及类的call方法知识点回归:1.CPU性能的查看:看架构代际、核心数、线程数2.GPU性能的查看:看显存、看级别、看架构代际3.GPU训练的方法:数据和模型移动到GPU device上4.类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)作业复习今天的内容,在巩固下代码。思考下为什么会出现这个问题。

2025-05-24 22:14:21 347

原创 【Python训练营打卡】day33 @浙大疏锦行

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。2. 回归任务中,标签需转为float类型(如torch.float32)。查看显卡信息的命令行命令(cmd中使用)DAY 33 简单的神经网络。(归一化、转换成张量)继承nn.Module。

2025-05-22 22:29:05 220

原创 【Python训练营打卡】day32 @浙大疏锦行

参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。官方文档的阅读和使用:要求安装的包和文档为同一个版本。官方文档的检索方式:github和官网。DAY 32 官方文档的阅读。绘图的理解:对底层库的调用。普通方法所需要的参数。

2025-05-21 21:50:35 238

原创 【Python训练营打卡】day31 @浙大疏锦行

DAY 31 文件的规范拆分和写法知识点回顾1.规范的文件命名2.规范的文件夹管理3.机器学习项目的拆分4.编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。

2025-05-20 21:23:36 1919

原创 【Python训练营打卡】day30 @浙大疏锦行

DAY 30 模块和库的导入知识点回顾1.导入官方库的三种手段2.导入自定义库/模块的方式3.导入库/模块的核心逻辑找到根目录(python解释器的目录和终端的目录不一致)作业自己新建几个不同路径文件尝试下如何导入。

2025-05-19 22:32:02 916

原创 【Python训练营打卡】day29 @浙大疏锦行

DAY 29 复习日知识点回顾1.类的装饰器2.装饰器思想的进一步理解:外部修改、动态3.类方法的定义:内部定义和外部定义作业:复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等,未来再过几个专题部分我们即将开启深度学习部分。

2025-05-18 13:59:15 759

原创 【Python训练营打卡】day28 @浙大疏锦行

calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。shape_type="circle":创建圆(参数:半径)。calculate_area():计算面积(公式:长×宽)。

2025-05-17 22:29:58 301

原创 【Python训练营打卡】day27 @浙大疏锦行

DAY 27 函数专题2:装饰器知识点回顾:1.装饰器的思想:进一步复用2.函数的装饰器写法3.注意内部函数的返回值作业:编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)@loggerdefmultiplyab):returnabmultiply23# 输出:# 开始执行函数 multiply,参数: (2, 3), {}# 函数 multiply 执行完毕,返回值: 6报错是因为关键字参数必须跟在所有位置参数之后。

2025-05-16 13:56:10 341

原创 【Python训练营打卡】day26 @浙大疏锦行

知识点回顾:1.函数的定义2.变量作用域:局部变量和全局变量3.函数的参数类型:位置参数、默认参数、不定参数4.传递参数的手段:关键词参数5.传递参数的顺序:同时出现三种参数类型时作业:题目1:计算圆的面积●任务:编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 = π * radius² (可以使用 math.pi 作为 π 的值)●要求:函数接收一个位置参数 radius。

2025-05-15 17:17:19 489

原创 【Python训练营打卡】day25 @浙大疏锦行

知识点回顾:1.异常处理机制2.debug过程中的各类报错3.try-except机制4.try-except-else-finally机制在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。作业:理解今日的内容即可,可以检查自己过去借助ai写的代码是否带有try-except机制,以后可以尝试采用这类写法增加代码健壮性。异常处理机制Python的异常处理机制为程序提供了强大的容错能力 (fault tolerance)。

2025-05-14 14:16:03 600

原创 【Python训练营打卡】day24 @浙大疏锦行

知识点回顾:1.元组2.可迭代对象3.os模块作业:对自己电脑的不同文件夹利用今天学到的知识操作下,理解下os路径。获取当前工作目录获取当前目录下的文件列表环境变量方法尝试遍历当前工作目录指定一个目录进行遍历。

2025-05-13 10:48:48 642

原创 【Python训练营打卡】day23 @浙大疏锦行

--- 定义不同列的类型和它们对应的预处理步骤 ---# 这些定义是基于原始数据 X 的列类型来确定的# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)# 识别原始的非 object 列 (通常是数值列)# 有序分类特征 (对应你之前的标签编码)# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意# 这里的类别顺序需要和你之前映射的顺序一致。

2025-05-12 22:57:33 921

原创 【Python训练营打卡】day22 @浙大疏锦行

test 复习日仔细回顾一下之前21天的内容,没跟上进度的同学补一下进度。作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码。

2025-05-11 18:53:25 1950

原创 【Python训练营打卡】day21 @浙大疏锦行

知识点回顾:1.LDA线性判别2.PCA主成分分析3.t-sne降维作业:自由作业:探索下什么时候用到降维?降维的主要应用?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。

2025-05-10 11:56:28 579

原创 【Python训练营打卡】day20 @浙大疏锦行

作业:尝试利用svd来处理心脏病预测,看下精度变化这里还有一个小插曲:第一次运行后准确率0.90....,但是范数相对误差0.8....当时就蒙了,为什么相对误差这么大,然后一排查,发现是粗心是大忌......计算累计能量占比从结果来看k=12/13/14时,准确率最高,同时k=13时相对误差还最小。其实我个人觉得那最好的奇异值取值应该是k=13吧?可是AI给出的推荐取值是k=12,可能是考虑到准确率都一样,且k=12是相对误差的值也不大,所以没必要再k=13了吧。

2025-05-09 13:51:51 309

原创 【Python训练营打卡】day19 @浙大疏锦行

常见的特征筛选算法。

2025-05-08 12:56:06 701

原创 【Python训练营打卡】day18 @浙大疏锦行

test 聚类后的分析:推断簇的类型知识点回顾:1.推断簇含义的2个思路:先选特征和后选特征2.通过可视化图形借助ai定义簇的含义3.科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。第一个簇(X_cluster0)——中年健康活跃男性型特征总结: 该簇主要由中年男性组成,他们的最大心率显示出较好的心脏健康状况,斜率特征集中,表明在某一特定生理指标上具有一致性。整体上,这一簇的个体表现出较为健康和活跃的特征。

2025-05-07 13:42:33 259

原创 【Python训练营打卡】day17 @浙大疏锦行

知识点1.聚类的指标2.聚类常见算法:kmeans聚类、dbscan聚类、层次聚类3.三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程1.标准化数据2.选择合适的算法,根据评估指标调参( )KMeans 和层次聚类的参数是K值,选完k指标就确定DBSCAN 的参数是 eps 和min_samples,选完他们出现k和评估指标。

2025-05-06 20:52:35 468

原创 【Python训练营打卡】day16 @浙大疏锦行

shap_values[:, :, 0] 的每一行代表的是 一个特定样本每个特征对于预测类别的贡献值(SHAP 值)。传入的 SHAP 值 (shap_values[:, :, 0]) 和特征数据 (X_test) 在维度上需要高度一致和对应。1.NumPy 数组的维度 (Dimension) 或称为 轴 (Axis)的概念,与我们日常理解的维度非常相似。直观判断:数组的维度层数通常可以通过打印输出时中括号 [] 的嵌套层数来初步确定。X_test 的每一行代表的也是同一个特定样本的特征值。

2025-05-05 23:43:27 673

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除