练习一:67
这题整体思路和上一题十进制比较像,但是问题在于字符串长度是不等的,因此采用在前面用0补齐的方式。
但还是老问题,一会字符串转列表,一会列表转字符串,正序,逆序输出的。都不太对,最后有一个新用法是:result = ''.join(s[::-1])把列表里的整数转为字符串并且逆序输出
这是AI的算法,我觉得他最简洁的地方是,没有向我那样一会字符串,一会列表的转换,
def addBinary(a: str, b: str) -> str:
# 初始化结果字符串和进位
result = ""
carry = 0
# 初始化两个指针,分别指向两个字符串的最后一位
i, j = len(a) - 1, len(b) - 1
# 从右向左逐位相加
while i >= 0 or j >= 0 or carry:
# 获取当前位的值,如果指针越界则为 0
digit_a = int(a[i]) if i >= 0 else 0
digit_b = int(b[j]) if j >= 0 else 0
# 计算当前位的和以及进位
total = digit_a + digit_b + carry
current_digit = total % 2
carry = total // 2
# 将当前位的结果添加到结果字符串的开头
result = str(current_digit) + result
# 移动指针
i -= 1
j -= 1
return result
它在加的过程中自动去补0,“digit_a = int(a[i]) if i >= 0 else 0”,这句的意思是,如果i >= 0,digit_a
赋int(a[i]),否则赋0,当越位的时候实现自动赋0.
练习二:69
方法一:双指针法
方法二:牛顿迭代法
知识点:
Newton牛顿法(一)| 基本思想+迭代公式_idl 函数newton 的用法-CSDN博客
看一下推理,记一下公式,然后代公式求解就好。
class Solution:
def mySqrt(self, x: int) -> int:
if x==0:
return 0
y=x
while True:
new=(y+x/y)/2
if abs(new-y)<1e-7:
break
y=new
return int(y)
练习三:70
这题还是比较简单,可以先1开始在纸上写几个,就能发现计算当前台阶数的爬法数量,为前两个台阶数爬法数量之和。就能想到斐波那契而数列,但我额外加了数组储存,其实有点多余:
官方:为了优化空间复杂度,我们可以不用保存f(x−2)之前的项,我们只用三个变量来维护f(x)、f(x−1)和f(x−2),你可以理解成是把「滚动数组思想」应用在了动态规划中,也可以理解成是一种递推,这样把空间复杂度优化到了O(1)。
class Solution:
def climbStairs(self, n: int) -> int:
# 当台阶数为 1 时,只有一种爬法
if n == 1:
return 1
# 初始化前两个台阶数对应的爬法数量
first, second = 1, 2
# 当台阶数大于 2 时,使用循环计算后续台阶数的爬法数量
for _ in range(2, n):
# 计算当前台阶数的爬法数量,为前两个台阶数爬法数量之和
third = first + second
# 更新前两个台阶数对应的爬法数量
first = second
second = third
# 返回第 n 个台阶对应的爬法数量
return second
练习四:83