CS-BP压缩感知图像重建算法matlab仿真
在计算机视觉领域,图像压缩是一个重要的课题。传统的压缩方法往往会导致图像失真,而压缩感知理论提供了一种新的思路。基于压缩感知理论,我们可以在保持较高压缩比的同时,尽可能地还原图像的信息。
本文将介绍一种基于压缩感知理论的图像重建算法——CS-BP算法,并给出matlab程序的实现。
算法流程:
-
采样:在原始图像上随机采样一些像素点,得到样本向量y。
-
稀疏表示:利用稀疏基D来表示y,即y=Dx。
-
压缩测量:用一组测量矩阵A对y进行压缩测量,得到测量结果b=Ax。
-
重建:利用BP算法求解优化问题,得到重建图像x。
matlab代码实现:
%% 读取图像
img = imread(‘lena.png’);
%% 参数设置
N = size(img, 1); % 图像大小
M = round(N/3); % 压缩后的向量长度
K = round(M/6); % 稀疏基D的列数
max_iter = 100; % 迭代次数
%% 采样
idx = randperm(N^2);
idx = idx(1:M);
y = double(reshape(img, [], 1));
y = y(idx);
%% 稀疏表示
D = dctmtx(N);
D = D(:, 1:K);
x0 = D\y;
%% 压缩测量
A =