-
MySQL的索引原理和数据结构能介绍下吗?
-
MySQL索引用于加速数据查询。索引通过特定的数据结构(如B树、B+树、哈希表)来减少数据查找的时间。
- B树(B-Tree):一种平衡的多叉树,每个节点可以有多个子节点,适用于范围查询。
- B+树(B+Tree):改进的B树,所有数据存储在叶子节点,叶子节点按顺序通过链表连接,方便范围查询。
- 哈希表(Hash Table):利用哈希函数将键映射到具体的值,适合等值查询。
-
-
B+树和B树的区别是什么?
- 数据存储位置:B树的所有节点都可以存储数据;B+树只有叶子节点存储数据。
- 叶子节点链表:B+树的叶子节点通过链表相连,有利于范围查询;B树没有这种结构。
- 查询效率:B+树的非叶子节点只存储键值,允许更多的键值存储在内存中,从而降低树的高度,查询更快。
-
MySQL聚簇索引和非聚簇索引的区别?
- 聚簇索引(Clustered Index):数据行的物理存储顺序与索引顺序相同。一个表只能有一个聚簇索引,通常是主键。
- 非聚簇索引(Non-clustered Index):索引顺序与数据存储顺序分开,索引的叶子节点存储指向数据行的指针。一个表可以有多个非聚簇索引。
-
使用MySQL索引都有什么原则?
- 高选择性列:对选择性高的列(即唯一值多的列)建立索引效果最好。
- 频繁查询列:对WHERE、JOIN、ORDER BY、GROUP BY中频繁使用的列建立索引。
- 避免频繁更新的列:在频繁更新的列上建立索引会增加维护开销。
- 组合索引最左前缀原则:组合索引时,把最常用的列放在最前面,以确保索引有效。
-
不同的存储引擎是如何进行实际存储的?
- InnoDB:使用B+树存储数据,按主键顺序存储,支持事务和外键。
- MyISAM:使用B+树存储数据和索引,但数据和索引分开,不支持事务和外键。
- Memory:数据存储在内存中,索引可以使用哈希表或B树,适用于需要快速访问的数据,不需要持久化。
-
MySQL的组合索引的结构是什么样的?
-
组合索引由多个列组成,按照列的顺序依次建立索引。遵循最左前缀匹配原则,即组合索引可以用于匹配从最左边开始的任何前缀。例如,组合索引 (A, B, C) 可以用于匹配 (A)、(A, B) 以及 (A, B, C) 的查询。
-
-
MySQL索引如何进行优化?
- 使用EXPLAIN分析查询:使用
EXPL
- 使用EXPLAIN分析查询:使用