基于BiLSTM-Bayes-SVM的多变量回归预测(多输入单输出)的Matlab实现方案。该方案结合了双向LSTM的特征提取能力、贝叶斯优化的超参数调优以及SVM的回归预测能力。

%% 基于BiLSTM-Bayes-SVM的多变量回归预测
% 多输入单输出 | Matlab实现
% 步骤:数据准备 -> BiLSTM特征提取 -> SVM回归 -> 贝叶斯优化

%% 1. 数据准备
clear; clc;
% 加载示例数据(替换为实际数据)
load('mgdata.mat'); % 示例数据,替换为你的数据集
data = mgdata';

% 参数设置
inputSize = size(data, 1) - 1;   % 输入变量数量
outputSize = 1;                  % 输出变量数量
windowSize = 10;                 % 时间窗口大小
trainRatio = 0.8;                % 训练集比例

% 创建时间序列数据
[X, Y] = createTimeSeriesData(data, windowSize, inputSize, outputSize);

% 划分训练集和测试集
numSamples = size(X, 1);
numTrain = floor(trainRatio * numSamples);
XTrain = X(1:numTrain, :);
YTrain = Y(1:numTrain);
XTest = X(numTrain+1:end, :);
YTest = Y(numTrain+1:end);

% 重塑数据为LSTM需要的格式 [样本数, 时间步, 特征数]
XTrain = reshape(XTrain, [size(XTrain,1), windowSize, inputSize]);
XTest = reshape(XTest, [size(XTest,1), windowSize, inputSize]);

%% 2. 构建BiLSTM特征提取器
% 定义BiLSTM网络结构
layers = [ ...
    sequenceInputLayer(inputSize)
    bilstmLayer(128, 'OutputMode', 'last')
    fullyConnectedLayer(64)
    reluLayer()
    fullyConnectedLayer(32)
    dropoutLayer(0.2)
    fullyConnectedLayer(outputSize)
    regressionLayer];

% 训练选项
options = trainingOptions('adam', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 32, ...
    'InitialLearnRate', 0.001, ...
    'LearnRateDropPeriod', 20, ...
    'LearnRateDropFactor', 0.7, ...
    'Shuffle', 'every-epoch', ...
    'Verbose', 1, ...
    'Plots', 'training-progress');

% 训练BiLSTM网络
net = trainNetwork(XTrain, YTrain, layers, options);

% 提取BiLSTM特征(使用最后一个全连接层之前的层)
featureExtractor = layerGraph(net.Layers);
featureExtractor = removeLayers(featureExtractor, {'regressionoutput'});
featureLayerName = 'fc_3'; % 根据实际层名调整

% 提取训练集特征
featuresTrain = activations(net, XTrain, featureLayerName, 'OutputAs', 'rows');

% 提取测试集特征
featuresTest = activations(net, XTest, featureLayerName, 'OutputAs', 'rows');

%% 3. 贝叶斯优化SVM超参数
% 定义优化目标函数
objFcn = @(params)svmRegressionLoss(featuresTrain, YTrain, ...
    params.BoxConstraint, params.KernelScale, params.Epsilon);

% 定义超参数搜索空间
optimVars = [
    optimizableVariable('BoxConstraint', [0.001, 1000], 'Transform', 'log')
    optimizableVariable('KernelScale', [0.001, 1000], 'Transform', 'log')
    optimizableVariable('Epsilon', [0.001, 1], 'Transform', 'log')
];

% 运行贝叶斯优化
results = bayesopt(objFcn, optimVars, ...
    'MaxObjectiveEvaluations', 30, ...
    'IsObjectiveDeterministic', false, ...
    'UseParallel', false);

% 获取最佳超参数
bestParams = results.bestPoint;

%% 4. 训练SVM回归模型
svmModel = fitrsvm(featuresTrain, YTrain, ...
    'KernelFunction', 'gaussian', ...
    'BoxConstraint', bestParams.BoxConstraint, ...
    'KernelScale', bestParams.KernelScale, ...
    'Epsilon', bestParams.Epsilon, ...
    'Standardize', true);

%% 5. 预测与评估
% 预测测试集
YPred = predict(svmModel, featuresTest);

% 计算性能指标
mse = mean((YTest - YPred).^2);
rmse = sqrt(mse);
mae = mean(abs(YTest - YPred));
r2 = 1 - sum((YTest - YPred).^2) / sum((YTest - mean(YTest)).^2);

% 显示结果
fprintf('测试集性能指标:\n');
fprintf('MSE: %.4f\n', mse);
fprintf('RMSE: %.4f\n', rmse);
fprintf('MAE: %.4f\n', mae);
fprintf('R²: %.4f\n', r2);

% 绘制结果
figure;
plot(YTest, 'b', 'LineWidth', 1.5);
hold on;
plot(YPred, 'r--', 'LineWidth', 1.5);
legend('实际值', '预测值');
title('BiLSTM-Bayes-SVM预测结果');
xlabel('样本');
ylabel('目标值');
grid on;

%% 辅助函数:创建时间序列数据
function [X, Y] = createTimeSeriesData(data, windowSize, inputSize, outputSize)
    numSteps = size(data, 2) - windowSize;
    X = zeros(numSteps, windowSize * inputSize);
    Y = zeros(numSteps, outputSize);
    
    for i = 1:numSteps
        X(i, :) = reshape(data(1:inputSize, i:i+windowSize-1), 1, []);
        Y(i, :) = data(inputSize+1, i+windowSize);
    end
end

%% 辅助函数:SVM回归损失计算
function loss = svmRegressionLoss(X, Y, boxConstraint, kernelScale, epsilon)
    % 交叉验证分区
    cvp = cvpartition(size(X,1), 'KFold', 5);
    cvLoss = zeros(cvp.NumTestSets, 1);
    
    for i = 1:cvp.NumTestSets
        trainIdx = cvp.training(i);
        testIdx = cvp.test(i);
        
        % 训练SVM模型
        svmModel = fitrsvm(X(trainIdx,:), Y(trainIdx), ...
            'KernelFunction', 'gaussian', ...
            'BoxConstraint', boxConstraint, ...
            'KernelScale', kernelScale, ...
            'Epsilon', epsilon, ...
            'Standardize', true);
        
        % 预测验证集
        YPred = predict(svmModel, X(testIdx,:));
        
        % 计算均方误差
        cvLoss(i) = mean((Y(testIdx) - YPred).^2);
    end
    
    % 平均交叉验证损失
    loss = mean(cvLoss);
end

实现说明:

  1. 数据准备

    • 创建时间窗口数据
    • 划分训练集和测试集
    • 重塑数据为LSTM需要的格式
  2. BiLSTM特征提取

    • 构建双向LSTM网络
    • 训练网络进行初步预测
    • 提取深层特征作为SVM输入
  3. 贝叶斯优化

    • 定义SVM超参数搜索空间
    • 使用贝叶斯优化寻找最佳超参数组合
    • 优化目标为5折交叉验证的均方误差
  4. SVM回归

    • 使用优化后的超参数训练SVM模型
    • 对测试集进行预测
  5. 性能评估

    • 计算MSE、RMSE、MAE和R²指标
    • 可视化预测结果对比

关键参数说明:

  • windowSize:时间窗口大小,决定使用多少历史时间步进行预测
  • BiLSTM结构:128个隐藏单元的双向LSTM,后接全连接层
  • 贝叶斯优化参数:BoxConstraint、KernelScale、Epsilon
  • 评估指标:均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R²)

使用指南:

  1. 准备数据:确保数据格式为[特征数×样本数]矩阵,最后一行为目标变量
  2. 调整参数:
    • 根据数据规模调整windowSize
    • 根据计算资源调整贝叶斯优化的MaxObjectiveEvaluations
    • 可能需要调整BiLSTM层结构和大小
  3. 替换数据:将’mgdata.mat’替换为实际数据集
  4. 运行流程:依次执行数据准备→特征提取→贝叶斯优化→SVM训练→预测评估

此方案结合了深度学习和传统机器学习的优势,通过BiLSTM提取时间序列的高级特征,利用贝叶斯优化自动寻找SVM最佳超参数,适用于复杂时间序列预测任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值