Mahout是一个开源的机器学习库,专注于大规模机器学习和数据挖掘任务。它提供了许多用于相似度计算的方法,这些方法可以应用于各种领域,如推荐系统、信息检索和聚类分析等。在本文中,我们将介绍Mahout中一些常用的相似度计算方法,并提供相应的源代码示例。
- 余弦相似度(Cosine Similarity)
余弦相似度是一种常用的相似度度量方法,用于衡量两个向量之间的夹角余弦值。在Mahout中,可以使用SparseVector
类和VectorSimilarityMeasure
接口来计算余弦相似度。下面是一个示例代码:
import org.apache.mahout.math.Vector;
import