基于深度学习的ECG疾病识别研究

本文探讨了基于深度学习的心电图(ECG)疾病识别,特别是心肌梗塞的检测。通过小波变换进行ECG信号降噪,使用LSTM进行特征提取,并构建了SVM和线性回归模型来识别心肌梗塞。研究指出,这种计算机辅助诊断方法有望提高疾病诊断的准确性和效率,以应对心血管疾病发病率上升的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**计算机系统的介绍

一 概要

  人体中最重要的器官就是心脏,它为流淌在全身的血液提供动力,假如心脏出现了某些问题,即产生了心血管疾病症状,那么血液循环的动力就出现了问题,就会影响我们的身体健康,严重的甚至会引发死亡。例如心血管疾病之一的心肌梗塞,它是一种常见的病症,人们的生活在以往的水平线上又上升了一个台阶,越来越优越的生活下也隐藏着工作压力,致使很多人处于亚健康的身体状态,长此以往就极有可能会引发心绞痛——心肌梗塞的前期症状,进而可能发展成为心肌梗塞,更严重的引发死亡。因此能够及时、准确的诊断出病症,做出更加有效的病理控制,对于减少心肌梗塞的死亡率至关重要。
  心血管类疾病的诊断大多数都是由临床医生根据心电图进行,但是这样进行诊断的效果还不是很理想,疾病进一步的确诊还需要由专业医师进行。所以,在人工智能、大数据时代,将计算机算法的快速反应以及通过改进的计算机算法相结合进行疾病的诊断的步伐应该加快。
  本文患心肌梗塞疾病的心电数据以及健康者的心电数据都是从Physiobank数据库的PTB心电数据库中获得的,通过基于小波变化的去噪方式对提取的信号进行预处理,使用长短期记忆法(即LSTM)对预处理之后的ECG信号进行特征提取,建立心肌梗塞的支持向量机模型(SVM)以及线性回归模型,分析心肌梗塞模型特征,由此归纳总结心肌梗塞患者的ECG信号特有标志,从而为更加高效、准确的对疾病做出诊断提供可能,为患者争取更多的治疗机会。

关键词:心电信号;心肌梗塞;小波去噪;提取;识别

二、绪论

1.1研究背景及意义

  城市化、老龄化在经济的发展之下进程也进一步加快,人们不健康的生活方式越来越突出,这样就使得引发心血管病的危险因素暴露的越发显著,发病人数一直呈现上升的趋势,心血管疾病在农村的死亡率一直高于城市[1]。据不完全统计,我国心血管疾病患病人数预计突破3亿,心血管病死亡率在各种原因导致的死亡率中占据榜首,平均每10秒钟就有一人死于心血管疾病[2]。更加令人需要注意的是此类数据近些年仍然处于上升状态,尤其是在成年人群,这一数据一直居高不下,中国心血管病的负担日益加重,已经成为迫在眉睫需要解决的威胁公众身体健康的问题,所以加强现代科技技术与医疗技术的结合,加快运用计算机对疾病的识别、诊断进行辅助的步伐尤为重要。
  在心血管疾病中,突发性心肌梗死成为导致死亡的一大重症。在郝志国[3](主要从事法医现场勘查、法医病理学、法医临床学检验鉴定工作)对心肌梗塞死亡法医学分析3例中,3例死者都是在经历过打斗之后身体感到有不舒服的感觉,随后立即倒地,并且在短时间内死亡。经尸体检验发现,这3例死者冠动脉严重狭窄,同时研究人员还发现了不同程度的陈旧的、新鲜的心肌梗塞[3]。冠状动脉如果发生了堵塞,就会引起心肌梗塞,进而可能会产生由于供血不足心肌缺血坏死的情况,这个病症在45岁以下人群中产生的概率一直在上升,而此病及时就医是最重要、最有效的手段。
  随着科技的发展和时代的需求,采用计算机相关技术对医学诊断进行分析和处理已得到越来越多的应用,尤其是对医疗中是否患有某项疾病的图像的识别诊断[4]。心电图(electrocardiogram,ECG)能够反应人体心脏健康状况,是判断是否患心血管疾病的重要依据,在临床上被广泛用于心血管疾病的筛查和诊断[5]。但是,目前仅仅是由临床医生通过心电图波形的变化来进行心血管疾病的诊断的效果还不够理想,还需要专业医师的进一步确诊;但是总是会发生存在一些心电图的特征没有明显异常特征的患者,而是只有在发病或者是病情恶化的时候才呈现明显的病症特有的波段异常特征[6],这一过程的发生,无疑使得患者确诊以及做出有效的病理措施的时间增加,众所周知在医学诊断中,时间就是生命,也许仅仅一秒之差,可能对于患者来说就是生死关头的问题,所以利用现代计算机技术与心电诊断进行结合以便及时、有效做出诊断对于医生、患者来说都至关重要。
  世卫组织有统计表明,心血管疾病将成为“头号杀手”,全球每年预计超过1800万的人死于心血管疾病[

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值