**计算机系统的介绍
文章目录
一 概要
随着机器视觉技术对人们日常生活运作越来越明显,人脸识别技术也凭借着其便捷友好的特性出现,并在医疗、安全和通信等邻域都有着应用,而其中较为常用的人脸识别签到也在各组织使用着,并且开始逐渐代替传统的签到手法。为了了解人脸识别签到技术,本项目通过运用深度学习中的TensorFlow框架来搭建卷积神经网络,将训练好的模型实现对特定人脸的识别进行签到,再添加录入信息模块,签到界面模块,出勤信息模块这三个模块来完成实现整个人脸识别签到系统。
我们可以通过本系统对成员信息的录入,再运用录入的数据来训练模型进行对人脸识别签到,最后可以在出勤信息表中了解成员出勤状况,在整个实现过程中也能大致了解到人脸识别签到的技术,这就是这个项目的意义所在。
关键字:机器视觉技术 卷积神经网络TensorFlow 人脸识别
二、系统分析
1 目的
录入人脸信息:调用摄像头对人脸进行采集,并保存在对应的文件夹中。
设计神经网络训练模型:对卷积神经网络各个层次进行设计编辑,从而获得一个准确率较高的训练模型。
输出对录入人脸进行识别并完成签到:运用训练好的模型对实时摄像中的人进行识别,成功识别后进行签到信息的登记。
系统UI的基本功能:录入人脸信息,在签到界面进行签到,相应的签到成功人员表和缺勤人员表。
2 系统总体分析
在本次实验研究人脸识别签到系统中,从实践生活学习的实际角度出发,设计主要涵盖以下功能模块:录入学生信息模块、签到主界面模块、出勤信息模块。如下图4-1所示:
图4-1 系统设计分析
4.2.1录入学生信息模块
在录入学生模块实现中,我将完成以下功能,录入学生的基本信息,并打开摄像头拍下多张学生的正面照作为训练的数据,最后在这个模块中可以直接进行模型的训练,将图像数据加入卷积神经网络中进行训练,得出一个全新的模型,用于签到主界面的模块中。
图4-2 录入学