基于tensorflow神经网络框架下的智能垃圾分类系统设计

**计算机系统的介绍

一 概要

  本文旨在设计一款利用python图像识别,实现垃圾智能分类的智能化环保安全型垃圾桶。它利用基于python深度学习的图像分类技术,精确识别出四种垃圾种类(干、湿、可回收、有害垃圾)的分类信息后进行自动化分类,而且具有精度较高的特点;该设计在智能分类、环保安全等方面优势明显,具有很高的实用价值。
关键词:垃圾分类;图像识别;自动化

二、系统分析

本装置以日常生活垃圾分类为主题,自主设计并制作一台能完成生活垃圾智能分类的装置。该装置能够实现“可回收垃圾、厨余垃圾、有害垃圾和其他垃圾”等四类常见城市生活垃圾的智能判别、分类与储存。
  在功能方面生活垃圾智能分类装置对投入的垃圾具有自主判别、分类、投放到相应的垃圾桶、满载报警、播放垃圾分类宣传片等周边功能。
  在机械设计方面自主设计并制造生活垃圾智能分类装置的机械部分(除标准件外)。每个垃圾桶至少朝外的面透明,能看清楚该桶内的垃圾,以满足用户可视化效果。而且该装置上设有一个垃圾投放口,用户将垃圾放置在该区域,然后由智能垃圾分类装置自动分类和投入到相应的垃圾桶。
  本文主要利用机械设计的本地机械装置进行辅助验证电子控制系统及驱动方案。因此本文将着重从各种角度阐述智能垃圾分类系统的设计方案。但本设计方案有如下几个固定特征:
  (1)为满足社会大众使用体验及产业化应用,生活垃圾智能分类装置所用传感器和电机的种类及数量不限,但将采用AI技术。
  (2)在该装置的上方配有一块高亮显示屏,支持各种格式的视频和图片播放,并显示该装置内部的各种数据,如投放顺序、垃圾类别名称、数量、任务完成提示、满载情况等。
  (3)该装置为家用智能装备,因此各机构均使用电能驱动,而且最高工作电压不大于24伏,电池供电、交流电供电等供电方式不限。
  (4)为保证系统运作稳定性,该装置中央控制系统确定为双处理器协同运作。其一负责对于图像的解析及运算,作为最高位运算控制器。其二负责对各种信号进行解析双向完成控制与运算任务,作为低位运算控制器。

三、机器视觉系统设计

本文研究的对象为智能垃圾分类装置,是由机械机构和电子系统两部分组成。在电子系统中又由视觉系统、嵌入式系统、动力元件、驱动元件等几部分组成。本章将先简要描述机器视觉系统的硬件设备与视觉系统的摄像方法。

2.1 硬件设备

随着摄像头成本和尺寸的不断下降以及图像处理软件及算法功能的不断增强,智能系统在新型视觉引导应用中大量出现,机器视觉和计算机视觉使用的摄像头类型有很多,有单目的也有用双目的。视觉摄像头主要可以分为以下几种类型:
① 2D成像技术
  对于具有机器视觉,但不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值