C++ AVL树

1.概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii
E.M.Landis1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树\的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
1. 它的左右子树都是AVL
2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡,它就是AVL树。如果它有n个结点,其高度可保持在O(\log_{2}n),搜索时间复杂度O(\log_{2}n)
                                     

2.AVL树节点的定义

template <class K, class V>
	//结点
	struct AVLTreeNode
	{
		//构造函数
		AVLTreeNode(const pair<K,V>& kv)
			:_left(nullptr)
			, _right(nullptr)
			, _parent(nullptr)
			, _bf(0)
			, _kv(kv)
		{}
		//成员变量
		AVLTreeNode* _left;
		AVLTreeNode* _right;
		AVLTreeNode* _parent;
		int _bf;//平衡因子
		pair<K, V> _kv;//节点数据
	};

3.AVL树的构造函数

//构造函数
		AVLTree()
			:_root(nullptr)
		{}
		//析构函数
		void _Destroy(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}
			_Destroy(root->_left);
			_Destroy(root->_right);
			delete root;
		}
		~AVLTree()
		{
			_Destroy(_root);
			_root = nullptr;
		}

4. AVL树的插入

我们规定平衡因子_bf为右子树的高度减去左子树的高度,且平衡因子_bf的取值范围为-1到1,则一颗树有如下平衡因子为01-1的三种情况。

旋转要保持的要求:
1.旋转后也是搜索二叉树。
2.变成平衡树并且降低树的高度。

右单旋

我们在subL节点的左子树插入了一个节点,导致parent失衡,接着我们就要尝试调整节点,让这棵树平衡。

由于subL的右子树subLR高度为h-1,而parent的右子树高度也为h-1,此时我们可以想办法把这两个h-1的等高子树凑到一起去,于是我们把parent的左子树断开,把subL的右子树拿去给parent做左子树,此时parent就得到了等高的两棵子树。也就是第二张图片的情况。随后,以parent为根的树,总高度为h,而subL的左子树刚好高度也是h-1+1 = h,所以我们可以把parent交给subL做子树,这样subL的两边也就平衡了。而刚刚我们把subL的右子树空出来了,此时可以直接转移,就得到了第三种图片的情况。

这个情况下,我们以subL为根的树是一颗平衡的树,而且平衡因子为0,插入节点前以parent为根的子树,高度为h+1,插入节点且旋转后高度仍为h+1。插入前后高度不变,不会影响父节点,直接跳出循环。

//右单旋
		void RotateR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			Node* grandparent = parent->_parent;
			parent->_left = subLR;
			if (subLR)
			{
				subLR->_parent = parent;
			}
			subL->_right = parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				_root = subL;
			}
			else
			{
				if (grandparent->_left == parent)
					grandparent->_left = subL;
				else
					grandparent->_right = subL;
			}
			subL->_parent = grandparent;
			//调整平衡因子
			parent->_bf = subL->_bf = 0;
		}

左单旋

左单旋与右单旋同理

//左单旋
		void RotateL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;
			Node* grandparent = parent->_parent;
			parent->_right = subRL;
			if (subRL)
			{
				subRL->_parent = parent;
			}
			subR->_left = parent;
			parent->_parent = subR;
			if (parent == _root)
			{
				_root = subR;
			}
			else
			{
				if (grandparent->_left == parent)
					grandparent->_left = subR;
				else
					grandparent->_right = subR;
			}
			subR->_parent = grandparent;
			//调整平衡因子
			parent->_bf = subR->_bf = 0;
		}

左右双旋

当出现图一这种插入情况时,又要将该情况分为图二和图三两种情况,也就是对subLR进行了再细分,到底新节点插入了左子树还是右子树。

subLR的左子树插入后旋转,调整后 parent的平衡因子:1,   subL 的平衡因子:0 ,  subLR的平衡因子:0
在这里插入图片描述

 在subLR的右子树插入后旋转,调整后 parent的平衡因子:0, subL 的平衡因子:-1,  subLR的平衡因子:0
在这里插入图片描述

//左右双旋
		void RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			int bf = subLR->_bf;
			RotateL(subL);
			RotateR(parent);
			if (bf == 1)
			{
				subL->_bf = -1;
				subLR->_bf = 0;
				parent->_bf = 0;
			}
			else if (bf == -1)
			{
				subL->_bf = 0;
				subLR->_bf = 0;
				parent->_bf = 1;
			}
			else if (bf == 0)
			{
				subL->_bf = 0;
				subLR->_bf = 0;
				parent->_bf = 0;
			}
		}

右左双旋

subRL的左子树插入后旋转,调整后 parent的平衡因子:0,   subR 的平衡因子:0 ,  subRL的平衡因子:1

subRL的右子树插入后旋转,调整后 parent的平衡因子:-1,   subR 的平衡因子:0 ,  subRL的平衡因子:0

//右左双旋
		void RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = parent->_left;
			int bf = subRL->_bf;
			RotateR(subR);
			RotateL(parent);
			if (bf == 1)
			{
				subR->_bf = 0;
				subRL->_bf = 0;
				parent->_bf = -1;
			}
			else if (bf == -1)
			{
				subR->_bf = 1;
				subRL->_bf = 0;
				parent->_bf = 0;
			}
			else if (bf == 0)
			{
				subR->_bf = 0;
				subRL->_bf = 0;
				parent->_bf = 0;
			}
		}

完整的插入代码

		//插入
		pair<Node*, bool> Insert(const pair<K, V>& kv)
		{
			//在第一个位置插入
			if (_root == nullptr)
			{
				_root = new Node(kv);
				return pair<Node*, bool>(_root, true);
			}
			Node* cur = _root, * parent = _root;
			while (cur)
			{
				if (kv.first < cur->_kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (kv.first > cur->_kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//已经存在不插入
					return pair<Node*, bool>(cur, false);
				}
			}
			//创建新结点连接
			cur = new Node(kv);
			cur->_parent = parent;
			if (kv.first < parent->_kv.first)
				parent->_left = cur;
			else
				parent->_right = cur;

			Node* ret = cur;
			//更新平衡因子
			while (cur != _root)
			{
				if (cur == parent->_right)
					parent->_bf++;
				else
					parent->_bf--;
				if (parent->_bf == 0)
				{
					break;
				}
				else if (parent->_bf == 1 || parent->_bf == -1)
				{
					//继续往上更新平衡因子
					cur = parent;
					parent = parent->_parent;
				}
				else if (parent->_bf == 2 || parent->_bf == -2)
				{
					if (parent->_bf == 2)
					{
						//左单旋
						if (cur->_bf == 1)
							RotateL(parent);
						//右左双旋
						else if (cur->_bf == -1)
							RotateRL(parent);
					}
					else if (parent->_bf == -2)
					{
						//右单旋
						if (cur->_bf == -1)
							RotateR(parent);
						//左右双旋
						else if (cur->_bf == 1)
							RotateLR(parent);
					}
					break;
				}
			}
			return pair<Node*, bool>(ret, true);
		}

5. 重载AVL树的[ ]

		//重载[]
		V& operator[](const K& key)
		{
			pair<Node*, bool> ret = Insert(make_pair(key,V()));
			return ret.first->_kv.second;
		}

6. AVL树的判定

		//判断是否为AVLTree
		//要求左右子树的高度差小于等于1,且等于其平衡因子
		int Height(Node* root)
		{
			if (root == nullptr)
			{
				return 0;
			}
			int LeftHeight = Height(root->_left);
			int RightHeight = Height(root->_right);
			return LeftHeight > RightHeight ? LeftHeight + 1 : RightHeight + 1;
		}
		bool _IsAVLTree(Node* root)
		{
			if (root == nullptr)
			{
				return true;
			}
			int LeftHeight = Height(root->_left);
			int RightHeight = Height(root->_right);
			if (RightHeight - LeftHeight!=root->_bf)
			{
				cout << root->_kv.first << "平衡因子异常" << endl;
				return false;
			}
			return abs(LeftHeight - RightHeight) < 2 &&
				_IsAVLTree(root->_left) && _IsAVLTree(root->_right);
		}
		bool IsAVLTree()
		{
			return _IsAVLTree(_root);
		}

7. AVL树的完整代码

#include <iostream>
#include <vector>
using namespace std;
namespace lbk
{
	template <class K, class V>
	//结点
	struct AVLTreeNode
	{
		//构造函数
		AVLTreeNode(const pair<K,V>& kv)
			:_left(nullptr)
			, _right(nullptr)
			, _parent(nullptr)
			, _bf(0)
			, _kv(kv)
		{}
		//成员变量
		AVLTreeNode* _left;
		AVLTreeNode* _right;
		AVLTreeNode* _parent;
		int _bf;//平衡因子
		pair<K, V> _kv;//节点数据
	};

	template <class K, class V>
	class AVLTree
	{
		typedef AVLTreeNode<K, V> Node;
		//成员变量
		Node* _root;
	public:
		//构造函数
		AVLTree()
			:_root(nullptr)
		{}
		//析构函数
		void _Destroy(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}
			_Destroy(root->_left);
			_Destroy(root->_right);
			delete root;
		}
		~AVLTree()
		{
			_Destroy(_root);
			_root = nullptr;
		}
		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (key < cur->_kv.first)
					cur = cur->_left;
				else if (key > cur->_kv.first)
					cur = cur->_right;
				else
					return cur;
			}
			return nullptr;
		}
		//重载[]
		V& operator[](const K& key)
		{
			pair<Node*, bool> ret = Insert(make_pair(key,V()));
			return ret.first->_kv.second;
		}
		//判断是否为AVLTree
		//要求左右子树的高度差小于等于1,且等于其平衡因子
		int Height(Node* root)
		{
			if (root == nullptr)
			{
				return 0;
			}
			int LeftHeight = Height(root->_left);
			int RightHeight = Height(root->_right);
			return LeftHeight > RightHeight ? LeftHeight + 1 : RightHeight + 1;
		}
		bool _IsAVLTree(Node* root)
		{
			if (root == nullptr)
			{
				return true;
			}
			int LeftHeight = Height(root->_left);
			int RightHeight = Height(root->_right);
			if (RightHeight - LeftHeight!=root->_bf)
			{
				cout << root->_kv.first << "平衡因子异常" << endl;
				return false;
			}
			return abs(LeftHeight - RightHeight) < 2 &&
				_IsAVLTree(root->_left) && _IsAVLTree(root->_right);
		}
		bool IsAVLTree()
		{
			return _IsAVLTree(_root);
		}
		//中序遍历
		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}
			_InOrder(root->_left);
			cout << root->_kv.first << " ";
			_InOrder(root->_right);
		}
		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}
		//插入
		pair<Node*, bool> Insert(const pair<K, V>& kv)
		{
			//在第一个位置插入
			if (_root == nullptr)
			{
				_root = new Node(kv);
				return pair<Node*, bool>(_root, true);
			}
			Node* cur = _root, * parent = _root;
			while (cur)
			{
				if (kv.first < cur->_kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (kv.first > cur->_kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//已经存在不插入
					return pair<Node*, bool>(cur, false);
				}
			}
			//创建新结点连接
			cur = new Node(kv);
			cur->_parent = parent;
			if (kv.first < parent->_kv.first)
				parent->_left = cur;
			else
				parent->_right = cur;

			Node* ret = cur;
			//更新平衡因子
			while (cur != _root)
			{
				if (cur == parent->_right)
					parent->_bf++;
				else
					parent->_bf--;
				if (parent->_bf == 0)
				{
					break;
				}
				else if (parent->_bf == 1 || parent->_bf == -1)
				{
					//继续往上更新平衡因子
					cur = parent;
					parent = parent->_parent;
				}
				else if (parent->_bf == 2 || parent->_bf == -2)
				{
					if (parent->_bf == 2)
					{
						//左单旋
						if (cur->_bf == 1)
							RotateL(parent);
						//右左双旋
						else if (cur->_bf == -1)
							RotateRL(parent);
					}
					else if (parent->_bf == -2)
					{
						//右单旋
						if (cur->_bf == -1)
							RotateR(parent);
						//左右双旋
						else if (cur->_bf == 1)
							RotateLR(parent);
					}
					break;
				}
			}
			return pair<Node*, bool>(ret, true);
		}
	private:
		//左单旋
		void RotateL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;
			Node* grandparent = parent->_parent;
			parent->_right = subRL;
			if (subRL)
			{
				subRL->_parent = parent;
			}
			subR->_left = parent;
			parent->_parent = subR;
			if (parent == _root)
			{
				_root = subR;
			}
			else
			{
				if (grandparent->_left == parent)
					grandparent->_left = subR;
				else
					grandparent->_right = subR;
			}
			subR->_parent = grandparent;
			//调整平衡因子
			parent->_bf = subR->_bf = 0;
		}
		//右单旋
		void RotateR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			Node* grandparent = parent->_parent;
			parent->_left = subLR;
			if (subLR)
			{
				subLR->_parent = parent;
			}
			subL->_right = parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				_root = subL;
			}
			else
			{
				if (grandparent->_left == parent)
					grandparent->_left = subL;
				else
					grandparent->_right = subL;
			}
			subL->_parent = grandparent;
			//调整平衡因子
			parent->_bf = subL->_bf = 0;
		}
		//左右双旋
		void RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			int bf = subLR->_bf;
			RotateL(subL);
			RotateR(parent);
			if (bf == 1)
			{
				subL->_bf = -1;
				subLR->_bf = 0;
				parent->_bf = 0;
			}
			else if (bf == -1)
			{
				subL->_bf = 0;
				subLR->_bf = 0;
				parent->_bf = 1;
			}
			else if (bf == 0)
			{
				subL->_bf = 0;
				subLR->_bf = 0;
				parent->_bf = 0;
			}
		}
		//右左双旋
		void RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = parent->_left;
			int bf = subRL->_bf;
			RotateR(subR);
			RotateL(parent);
			if (bf == 1)
			{
				subR->_bf = 0;
				subRL->_bf = 0;
				parent->_bf = -1;
			}
			else if (bf == -1)
			{
				subR->_bf = 1;
				subRL->_bf = 0;
				parent->_bf = 0;
			}
			else if (bf == 0)
			{
				subR->_bf = 0;
				subRL->_bf = 0;
				parent->_bf = 0;
			}
		}

	};
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我要满血复活

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值