1.概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O() ,搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
1. 插入元素, 根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
2. 搜索元素, 对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。
例如:数据集合{1,7,6,4,5,9}; 哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
2. 哈希冲突
对于两个数据元素的关键字k_i和 k_j(i != j),有k_i != k_j,但有:Hash(k_i) == Hash(k_j),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
3. 哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则: 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间 哈希函数计算出来的地址能均匀分布在整个空间中,哈希函数应该比较简单.
常见哈希函数
1. 直接定址法--(常用) 取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B ,优点:简单、均匀;缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况 .
2. 除留余数法--(常用) 设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数, 按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址.
4. 哈希冲突解决
解决哈希冲突两种常见的方法是:闭散列和开散列
4.1 闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有 空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?
4.1.1 线性探测
比如1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4, 因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入
通过哈希函数获取待插入元素在哈希表中的位置,如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突, 使用线性探测找到下一个空位置,插入新元素
删除
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State { EMPTY, EXIST, DELETE };
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。
4.2.2 二次探测
线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法 为:H_i = (H_0 + i^2 )% m, 或者:H_i = (H_0 - i^2 )% m。其中:i = 1,2,3…, H_0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。 因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
4.2 开散列
1. 开散列概念
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
2. 开散列实现
#include <iostream>
#include <vector>
using namespace std;
namespace OpenHash
{
template<class T>
struct HashNode
{
T _data;
HashNode* _next;
HashNode(const T& data)
:_data(data)
,_next(nullptr)
{}
};
//将key转换为整型方便取模
template <class K>
class Hash
{
size_t operator()(const K& key)
{
return key;
}
};
//模板特化,将string类型转换为整型
template<>
class Hash<string>
{
size_t operator()(const string& s)
{
size_t ret = 0;
for (auto e : s)
{
ret =ret* 31 + e;
}
return ret;
}
};
//实现迭代器
//因为迭代器的实现需要借助HashTable,所以需要前置定义
template <class K, class T, class KeyOfT, class HashFunc = Hash<K>>
class HashTable;
template <class K, class T, class Ptr,class Ref,class KeyOfT, class HashFunc = Hash<K>>
struct HashTableIterator
{
typedef HashNode<T> Node;
typedef HashTableIterator<K, T, Ptr,Ref,KeyOfT, HashFunc> Self;
typedef HashTable<K, T, KeyOfT, HashFunc> HashTable;
HashTable* _ht;
Node* _node;
HashTableIterator(const Node*& node, const HashTable*& ht)
:_ht(ht)
,_node(node)
{}
Self& operator++()
{
//遍历当前桶
if (_node->_next)
_node = _node->_next;
//找下一个桶
else
{
KeyOfT kot;
HashFunc hf;
//获取索引值
size_t index = hf(kot(_node->_data)) % _ht->_table.size();
++index;
while (index < _ht->_table.size() && _ht->_table[index]==nullptr)
++index;
if (index == _ht->_table.size())
_node = nullptr;
else
_node = _ht->_table[index];
}
return *this;
}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator==(const Self& s)
{
return _node == s._node;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
};
template <class K,class T,class KeyOfT,class HashFunc>
class HashTable
{
typedef HashNode<T> Node;
typedef HashTableIterator<K, T, T*,T&,KeyOfT, HashFunc> iterator;
//友元(因为iterator需要用到_table)
template <class K, class T, class Ptr, class Ref, class KeyOfT, class HashFunc>
friend struct HashTableIterator;
private:
vector<Node*> _table;
size_t _n;//有效数据个数
public:
//构造函数
HashTable()
:_table(vector<Node*>())
,_n(0)
{}
iterator begin()
{
for (size_t i = 0; i < _table.size(); i++)
{
if (_table[i])
return iterator(_table[i], this);
}
return iterator(nullptr,this);
}
iterator end()
{
return iterator(nullptr, this);
}
iterator find(const K& key)
{
if (_table.size() == 0)
{
return iterator(nullptr, this);
}
KeyOfT kot;
HashFunc hf;
size_t index = hf(key) % _table.size();
Node* cur = _table[index];
while (cur)
{
if (kot(cur->_data) == key)
return iterator(cur, this);
cur = cur->_next;
}
return iterator(nullptr, this);
}
pair<iterator, bool> insert(const K& key)
{
//第一次插入需要扩容
if (_table.size() == 0)
_table.resize(10);
//不能出现重复数据
if (find(key) != iterator(nullptr, this))
{
return make_pair(find(key), false);
}
KeyOfT kot;
HashFunc hf;
//桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,
//可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对
//哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个
//节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数
//时,可以给哈希表增容。
//负载因子到1,需要扩容
if (_n == _table.size())
{
vector<Node*> newtable;
newtable.resize(_table.size() * 2);
//重新映射到新表
for (auto e : _table)
{
Node* cur = e;
while (cur)
{
size_t index = hf(kot(cur->_data)) % newtable.size();
cur->_next = newtable[index];
newtable[index] = cur;
cur = cur->_next;
}
}
}
size_t index = hf(key) % _table.size();
Node*& cur = _table[index];
while (cur)
cur = cur->_next;
cur = new Node(key);
return make_pair(iterator(cur,this), true);
}
bool erase(const K& key)
{
KeyOfT kot;
HashFunc hf;
size_t index = hf(key) % _table.size();
Node* cur = _table[index],*pre=_table[index];
while (cur)
{
if (kot(cur->_data) == key)
{
//要删除该位置第一个元素
if (cur == pre)
_table[index] = cur->_next;
else
pre->_next = cur->_next;
delete cur;
_n--;
return true;
}
pre = cur;
cur = cur->_next;
}
return false;
}
};
}