本地私有化RAG知识库搭建心得总结

【项目背景】

2025年2月,国内AI领域迎来现象级事件-DeepSeek突然全网爆红。引发指数级用户增长。面对激增的访问压力,平台服务器多次出现服务中断,"请求失败"的提示界面成为用户高频讨论话题,由此掀起了一场自建AI私有部署的热潮。

历经2个多月的入坑体验,针对Deepseek从小白到环境搭建;RAG(企业与个人)知识库从理论到技术落地;知识应用转化的过程中总结经验。

【项目经验】

A、知识库路线选择。

1、将AI做为个人辅助工具且不想(不爱)折腾,在不涉及敏感信息的情况下,建议直接用互联网上的在线AI工具即可。产品开箱即用,简单方便专注应用。

a、本地安装开源免费的知识库应用程序,然后向平台申请API并购买Token。

b、使用互联网大厂开发的AI知识库应用实现个人的AI知识库应用。例如:知乎知识库、豆包本地知识库。

2、如果涉及敏感信息事务处理(例如:合同检查,财务分析,数据分析,知识库等),则建议采用私有化部署。

**【总结】:个人普通用户,倾向于豆包本地方案+互联网AI应用;**单位组织或家庭多成员及个人高级用户,倾向于本地知识库搭建+互联网AI应用。

B、知识库应用误区。

1、认为私有化部署的本地知识库(大模型)可以从互联网上直接获取信息,把知识库当成百度用。

2、寄希望于AI的“智能”,认为只要将相关的资料不做任何整理直接原样导入,就可以借助AI大模型得到想要的结果内容,这恰是AI大模型魔幻的开始。

3、想让知识库具备聪明大脑,目前仍需人工干预。首先要人工进行资料源的整理(例如规则排版,去除无效格式与内容,去除错误的信息),进而得到干净的数据信息源。

C、知识库大模型的适用场景。

1、将同类型的资料全部上传,然后通过会话形式快速获取相关答案。

2、通过大量同类的资料,就某一个问题(或事项)借助AI大模型进行推理分析,帮助(或训练)自己构建全面且系统化的思维模型。

3、通过知识库不断更新知识与梳理经验,形成【提炼-学习-实践-总结】的良性闭环,构建个人在职场最深的护城河。

**D、**专注于内容建设。

1、知识库的信息反馈质量核心源于当下的知识“投喂”。

2、知识库的内容需要不断持续整理,知识经验的总结会随着时间不断变化,倒逼自己不断更新并掌握知识经验。

3、关于资料的整理可以借助AI工具取巧处理,提高效率。例如先通过豆包进行解析整理提纯,然后就资料直接转存成PDF或文本格式内容。

4、资料源分为两类单独存放。一份是原始资料,一份是经过AI工具转换的资料,然后再将此份资料导入到知识库中。保留原始资料是满足未来需要不断重新提炼信息。

E、适合原则。

1、它如果出现"答非所问",正经的“胡说八道”,问题可能出在:

a、两个大模型没适配好或是大模型参数配置;(如下图例,后续会专门介绍如何参数配置)

img

b、资料向量解析问题(例如PDF文档中的图文资料,EXCEL或PPT中的带有合并单元格的数据表格,目前都不能够正确解析);

c、提示词没用好等因素。(有机会将专门介绍如何使用提示词,请支持鼓励。)

2、目前AI技术发展太快了,每隔一段时间都有新的模型出现,耐心等待其进化;定期对大模型进行适配与参数配置优化。若效果满意就确定优化方案,就不要再随意变更。

3、知识库的向量模型与大语言模型,无需采用最高的模型版本(投入成本高),以适配当下的设备,能够满足自己的知识应用需求就好。

F、投入产出比,算效益账。

(预算高一步到位,预算有限合适就好;失败的沉落成本风险。)

1、虽然有号称可不用独显运行的AI大模型,实际体验下来,只能说是能用(大模型运行反馈慢),效果并不理想没有可行性。

2、目前大模型依然是吃硬件性能大户,从投入性价比考虑,在电脑配置方面优先考虑:

a、显存12G以上的独显(重点关注显存容量,这是你能否顺畅使用的前提);

b、内存2根组成32GB以上(是你能否用更高级别的大模型,在现有配置下混合模式运行的前提);

c、512GB的SSD固态磁盘(纯粹加载快);

d、匹配略高于显卡功率需求的电源。(电压电流稳了,主板上的一切设备也就稳了)

G、配置参考。

以下是搭建个人知识库项目,在原主机(B450主板+AMD 5600G + 512G SSD )的基础上,进行核心部件升级的配置方案。

读者福利:知道你对AI大模型感兴趣,便准备了这套对AI大模型学习资料

对于0基础小白入门:

如果你是零基础小白,想快速入门AI大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:大模型从零基础到进阶的学习路线、100套AI大模型商业化落地方案,大模型全套视频教程。带你从零基础系统性的学好AI大模型!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值