LangChain
LangChain是一个用于开发由大型语言模型 (LLM) 驱动的应用程序的框架,帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序。
LangChain库主要由以下几个不同的包组成:
- langchain-core:基础抽象和LangChain表达语言;
- langchain-community:第三方集成,主要包括langchain集成的第三方组件;
- langchain:主要包括链(chain)、代理(agent)和检索策略;
LangChain的核心组件:
- 模型(Models):包含各大语言模型的LangChain接口和调用细节,以及输出解析机制;
- 提示模板(Prompts):使提示工程流线化,进一步激发大语言模型的潜力;
- 数据检索(Indexes):构建并操作文档的方法,接受用户的查询并返回最相关的文档,轻松搭建本地知识库;
- 记忆(Memory):通过短时记忆和长时记忆,在对话过程中存储和检索数据,让CahtBot记住你。
- 链(Chains):LangChain中的核心机制,以特定方式封装各种功能,并通过一系列的组合,自动而灵活地完成任务;
- 代理(Agents):另一个LangChain中核心的机制,通过“代理”让大模型自主调用外部工具和内部工具,使智能Agent成为可能。
好了,这里就不过多介绍LangChain了,大家可以去LangChain官网了解。
安装LangChain
在开始编写LangChain程序前,首先执行如下代码安装openai和langchain:
pip install openai
pip install langchain-openai
pip install langchain
安装完毕后,接下来我们使用OpenAI、智谱AI、LMStudio的openai服务三种方式来编写LangChain程序。
个人比较推荐使用LMStudio的openai服务。
OpenAI
注意:OpenAI需要科学上网才能使用,不使用科学上网可以跳过这一方式。
进入OpenAI官网,根据图中顺序,创建API keys并复制密钥:
接下来编写LangChain程序,示例代码如下:
from langchain_openai import ChatOpenAI # 导入ChatOpenAI
openai_api_key=刚刚复制的OpenAIAPI密钥
llm=ChatOpenAI(openai_api_key=openai_api_key)
print(llm.invoke('中国的首都是哪里?不需要介绍'))
运行结果为:
北京
注意:如果没有OpenAI的API使用次数,会报错:
openai.RateLimitError: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error
大家可以根据需求购买。
如果不想每次都设置OpenAI的API密钥,可以在系统的环境变量中添加密钥,如下图所示:
代码修改为:
from langchain_openai import ChatOpenAI
import os
openai_api_key=os.getenv('OPEN_API_KEY') # 在系统环境变量中获取openAI的API密钥
llm=ChatOpenAI(openai_api_key= openai_api_key)
llm.invoke('中国的首都是哪里?不需要介绍')
智谱AI
由于OpenAI需要科学上网才能使用,所以我们可以使用智谱AI,其新用户免费送2000万次请求,创建API Key并复制密钥如下图所示:
执行如下代码安装智谱AI:
pip install zhipuai
示例代码如下:
from zhipuai import ZhipuAI
client=ZhipuAI(api_key='智谱AI密钥')
response = client.chat.completions.create(
# 使用的模型
model='glm-4',
# 会话内容
messages=[
{"role": "user", "content": "你好"},
{"role": "assistant", "content": "我是人工智能助手"},
{"role": "user", "content": "如何学好LangChain"}
],
# 流式输出
stream=True
)
for chunk in response:
print(chunk.choices[0].delta.content,end="")
运行结果如下:
LMStudio的openai服务
大家可以根据这篇文章安装LMStudio。
安装完毕后,如下图所示,加载模型:
完成以上步骤后,编写如下代码:
from langchain_openai import ChatOpenAI
openai_api_key="google/gemma-3-12b" # 可以不设
openai_api_base="http://127.0.0.1:1234/v1"
chat =ChatOpenAI(
openai_api_key=openai_api_key, # 密钥
openai_api_base=openai_api_base, # openai接口
)
print(chat.invoke("当前使用的大模型版本是多少"))
运行结果如下:
好了,LangChain教程——LangChain基本使用就讲到这里了,下一篇我们学习LangChain教程——提示词模板。
读者福利:知道你对AI大模型感兴趣,便准备了这套对AI大模型学习资料
对于0基础小白入门:
如果你是零基础小白,想快速入门AI大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:大模型从零基础到进阶的学习路线、100套AI大模型商业化落地方案,大模型全套视频教程。带你从零基础系统性的学好AI大模型!
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
