LangChain教程——LangChain基本使用

LangChain

LangChain是一个用于开发由大型语言模型 (LLM) 驱动的应用程序的框架,帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序。

LangChain库主要由以下几个不同的包组成:

  • langchain-core:基础抽象和LangChain表达语言;
  • langchain-community:第三方集成,主要包括langchain集成的第三方组件;
  • langchain:主要包括链(chain)、代理(agent)和检索策略;

LangChain的核心组件:

  • 模型(Models):包含各大语言模型的LangChain接口和调用细节,以及输出解析机制;
  • 提示模板(Prompts):使提示工程流线化,进一步激发大语言模型的潜力;
  • 数据检索(Indexes):构建并操作文档的方法,接受用户的查询并返回最相关的文档,轻松搭建本地知识库;
  • 记忆(Memory):通过短时记忆和长时记忆,在对话过程中存储和检索数据,让CahtBot记住你。
  • 链(Chains):LangChain中的核心机制,以特定方式封装各种功能,并通过一系列的组合,自动而灵活地完成任务;
  • 代理(Agents):另一个LangChain中核心的机制,通过“代理”让大模型自主调用外部工具和内部工具,使智能Agent成为可能。

好了,这里就不过多介绍LangChain了,大家可以去LangChain官网了解。

安装LangChain

在开始编写LangChain程序前,首先执行如下代码安装openai和langchain:

pip install openai
pip install langchain-openai
pip install langchain

安装完毕后,接下来我们使用OpenAI、智谱AI、LMStudio的openai服务三种方式来编写LangChain程序。

个人比较推荐使用LMStudio的openai服务。

OpenAI

注意:OpenAI需要科学上网才能使用,不使用科学上网可以跳过这一方式。

进入OpenAI官网,根据图中顺序,创建API keys并复制密钥:

img

img

接下来编写LangChain程序,示例代码如下:

from langchain_openai import ChatOpenAI    # 导入ChatOpenAI
openai_api_key=刚刚复制的OpenAIAPI密钥
llm=ChatOpenAI(openai_api_key=openai_api_key)
print(llm.invoke('中国的首都是哪里?不需要介绍'))

运行结果为:

北京

注意:如果没有OpenAI的API使用次数,会报错:

openai.RateLimitError: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error

大家可以根据需求购买。

如果不想每次都设置OpenAI的API密钥,可以在系统的环境变量中添加密钥,如下图所示:

img

代码修改为:

from langchain_openai import ChatOpenAI
import os
openai_api_key=os.getenv('OPEN_API_KEY')   # 在系统环境变量中获取openAI的API密钥
llm=ChatOpenAI(openai_api_key= openai_api_key)
llm.invoke('中国的首都是哪里?不需要介绍')

智谱AI

由于OpenAI需要科学上网才能使用,所以我们可以使用智谱AI,其新用户免费送2000万次请求,创建API Key并复制密钥如下图所示:

img

执行如下代码安装智谱AI:

pip install zhipuai

示例代码如下:

from zhipuai import ZhipuAI
client=ZhipuAI(api_key='智谱AI密钥')

response = client.chat.completions.create(
    # 使用的模型
    model='glm-4',
    # 会话内容
    messages=[
        {"role": "user", "content": "你好"},
        {"role": "assistant", "content": "我是人工智能助手"},
        {"role": "user", "content": "如何学好LangChain"}
    ],
    # 流式输出
    stream=True

)
for chunk in response:
    print(chunk.choices[0].delta.content,end="")

运行结果如下:

img

LMStudio的openai服务

大家可以根据这篇文章安装LMStudio。

安装完毕后,如下图所示,加载模型:

img

img

完成以上步骤后,编写如下代码:

from langchain_openai import ChatOpenAI

openai_api_key="google/gemma-3-12b"       # 可以不设
openai_api_base="http://127.0.0.1:1234/v1"

chat =ChatOpenAI(
    openai_api_key=openai_api_key,  # 密钥
    openai_api_base=openai_api_base, # openai接口
)
print(chat.invoke("当前使用的大模型版本是多少"))

运行结果如下:

img

好了,LangChain教程——LangChain基本使用就讲到这里了,下一篇我们学习LangChain教程——提示词模板。

读者福利:知道你对AI大模型感兴趣,便准备了这套对AI大模型学习资料

对于0基础小白入门:

如果你是零基础小白,想快速入门AI大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:大模型从零基础到进阶的学习路线、100套AI大模型商业化落地方案,大模型全套视频教程。带你从零基础系统性的学好AI大模型!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 关于 LangChain教程与入门指南 LangChain 是一种强大的自然语言处理工具链,旨在帮助开发者构建由语言模型驱动的应用程序。以下是关于 LangChain 的一些关键知识点以及如何快速上手的指导。 #### 1. **LangChain 基础** LangChain 提供了一套完整的框架来支持 NLP 应用开发。其基础架构围绕三个主要组件展开:LLM(大型语言模型)、提示模板(Prompt Templates),以及 LangChain 自身的功能模块[^3]。理解这三个部分对于初学者至关重要: - **LLM (Large Language Model)** 这是整个系统的基石,负责生成基于上下文的内容。你可以选择不同的预训练模型并将其集成到 LangChain 中。 - **提示模板 (Prompt Templates)** 提示模板用于结构化输入数据,以便更好地引导 LLM 输出预期的结果。合理设计提示可以显著提升性能和效果。 - **LangChain 功能模块** 它封装了许多实用功能,比如链式操作、记忆管理等,从而简化复杂流程的设计。 #### 2. **创建简单链条** 为了熟悉 LangChain 的工作方式,可以从最简单的例子入手——创建一条基本链条。下面是一个典型的实现案例[^4]: ```python from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain # 初始化 LLM 和提示模板 llm = OpenAI(temperature=0.7) prompt_template = "What is a good name for a company that makes {product}?" prompt = PromptTemplate(input_variables=["product"], template=prompt_template) # 创建链条 chain = LLMChain(llm=llm, prompt=prompt) # 执行链条 result = chain.run(product="eco-friendly water bottles") print(result) ``` 此代码展示了如何利用 `LLMChain` 将用户输入转化为经过格式化的提示,并传递给指定的语言模型进行推理。 #### 3. **进一步学习方向** 除了上述基础知识外,还可以继续探索以下几个方面以深化技能水平[^1][^2]: - **高级特性**: 掌握诸如多步对话逻辑、外部工具调用等功能。 - **优化策略**: 学习调整超参数、改进提示工程技巧等方式提高效率。 - **实际项目实践**: 结合具体业务场景尝试搭建真实可用的产品原型。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值