目录
- 系列篇章💥
- 前言
- 一、总体概述
-
- (一)什么是 MCP?
- (二)Cherry Studio 简介
- (三)Cherry Studio 与 MCP 的融合
- 二、技术优势
-
- (一)即插即用
- (二)热插拔
- (三)统一接口
- (四)高效的数据交互
- 三、应用场景
-
- (一)本地文件操作
- (二)网页数据抓取
- (三)云端 API 调用
- (四)数据分析与可视化
- (五)自动化任务
- 四、实战体验
-
- (一) 安装MCP服务器
- (二)配置 MCP服务器
- (三)启用 MCP 服务
- (四)使用 Fetch 工具抓取网页内容
- (五)使用 Filesystem 工具操作本地文件
- 总结
前言
在人工智能飞速发展的今天,AI 模型的应用场景不断拓展,但同时也面临着诸多挑战,例如如何让 AI 模型更好地与外部资源进行交互和协作。MCP(Model Context Protocol,模型上下文协议)作为一种新兴的接口协议,为解决这一问题提供了新的思路。而 Cherry Studio 作为一款功能强大的 AI 桌面客户端,其与 MCP 的融合更是为 AI 开发和应用带来了全新的机遇。本文将详细介绍 Cherry Studio 与 MCP 的融合实践,包括技术优势、多应用场景实践以及总结,旨在帮助开发者更好地理解和应用这一技术。
一、总体概述
(一)什么是 MCP?
MCP 是一种接口协议,由 AI 大模型公司 Anthropic 在 2024 年 11 月推出。它允许大型语言模型(LLM)通过调用外部工具和服务获取实时信息,从而扩展其能力。MCP 的核心在于它能够将 AI 模型与各种外部资源(如数据源、工具、API 等)连接起来
,让 AI 模型能够像使用“USB 接口”一样
,即插即用地与这些资源进行交互。
(二)Cherry Studio 简介
Cherry Studio 是一款功能全面的 AI 桌面客户端,以其友好的用户界面和易用性深受用户喜爱。它支持多种 AI 模型,并提供了丰富的功能和工具,帮助用户更高效地进行 AI 开发和应用。
近期,Cherry Studio 开始支持 MCP 服务,这使得它能够更好地利用 MCP 协议的优势,为用户提供更强大的 AI 功能。
(三)Cherry Studio 与 MCP 的融合
Cherry Studio 与 MCP 的融合,使得用户可以在 Cherry Studio 中轻松配置和使用 MCP 服务。通过这种方式,用户可以让 AI 模型访问本地文件、调用云端 API、抓取网页数据等,极大地扩展了 AI 模型的应用范围。
这种融合不仅提升了 AI 模型的灵活性和实用性,还降低了开发难度,让更多的开发者能够快速上手并应用这一技术。
二、技术优势
(一)即插即用
MCP 协议的核心优势之一是即插即用。无论是本地文件、数据库,还是云端 API,只需接入 MCP,即可直接使用,无需编写复杂的适配代码。这大大简化了开发流程,提高了开发效率。
(二)热插拔
MCP 支持热插拔,即在运行时可以随时添加或移除数据源。系统会自动识别新的数据源,无需重启服务。这一特性使得 AI 模型能够更加灵活地应对不同的需求,随时调整其功能和行为。
(三)统一接口
MCP 提供了统一的接口,支持连接各种类型的 AI 模型和工具。这意味着开发者可以使用相同的接口与不同的资源进行交互,无需为每种资源编写特定的代码。这种统一性不仅提高了开发效率,还增强了系统的可扩展性和互操作性。
(四)高效的数据交互
MCP 支持两种传输协议:STDIO(标准输入/输出)和 SSE(服务器发送事件)。STDIO 类型可以在本地运行,能够直接访问本机文件和应用程序,而 SSE 类型则运行在远程服务器上,配置简单,适合获取云端数据和调用在线 API。这种灵活的协议选择使得开发者可以根据具体需求选择最适合的传输方式。
三、应用场景
(一)本地文件操作
通过 MCP,Cherry Studio 中的 AI 模型可以直接访问和操作本地文件。例如,用户可以让 AI 模型读取本地的文档、表格,进行数据分析和内容提取。这使得 AI 模型能够更好地与本地资源进行交互,为用户提供更个性化的服务。
(二)网页数据抓取
MCP 还支持网页数据抓取,用户可以让 AI 模型通过 Fetch 工具获取网页内容。例如,用户可以指定一个网页链接,让 AI 模型抓取该网页的内容并进行分析。这使得 AI 模型能够获取最新的网络信息,为用户提供更准确的建议。
(三)云端 API 调用
借助 MCP,Cherry Studio 中的 AI 模型可以轻松调用云端 API。例如,用户可以配置 MCP 服务,让 AI 模型调用天气 API 获取实时天气信息。这种云端 API 调用使得 AI 模型能够获取更广泛的数据,从而提供更全面的服务。
(四)数据分析与可视化
结合 MCP,Cherry Studio 可以实现数据分析与可视化。用户可以将本地或云端的数据导入 Cherry Studio,然后利用 AI 模型进行数据分析。分析结果可以通过可视化工具展示出来,帮助用户更好地理解数据。
(五)自动化任务
Cherry Studio 与 MCP 的结合还可以实现自动化任务。例如,用户可以配置 AI 模型定期从云端 API 获取数据,并自动更新本地文件或数据库。这种自动化功能可以大大提高工作效率,减少人工干预。
四、实战体验
(一) 安装MCP服务器
在开始配置 MCP 服务之前,需要确保已安装必要的运行环境。提前下载安装Cherry Studio,
下载地址:https://github.com/CherryHQ/cherry-studio/releases/download/v1.1.17/Cherry-Studio-1.1.17-setup.exe
其他系统版本请访问:https://docs.cherry-ai.com/cherry-studio/download
单击Cherry-Studio-1.1.17-setup.exe即可安装(一路下一步,安装完成打开界面如下:)
(二)配置 MCP服务器
添加 MCP 服务器:打开 Cherry Studio,进入设置页面,找到“MCP 服务器”选项。
点击“添加服务器”,填写相关参数。例如,添加一个 fetch-server
:
- 名称:
fetch-server
- 类型:
STDIO
- 命令:
uvx
- 参数:
mcp-server-fetch
点击“确定”保存配置。Cherry Studio 将自动下载所需的 MCP Server。
安装相关依赖工具,按照提醒,安装UV和Bun
(三)启用 MCP 服务
在聊天框中启用 MCP 服务需要满足以下条件:
- 使用支持函数调用的模型(模型名字后会出现扳手符号)。
- 已成功添加 MCP 服务器。
启用后,可以在聊天框中直接使用 MCP 功能,例如通过 Fetch 工具抓取网页内容。
(四)使用 Fetch 工具抓取网页内容
在聊天框中输入指令,例如:“请从 [网页链接] 获取最新内容并总结”。
如果配置成功,AI 将从指定网页抓取内容并返回总结。效果如下:
(五)使用 Filesystem 工具操作本地文件
1)配置 Filesystem 服务
在 MCP 服务器配置中,点击“添加服务器”,搜索并选择 @modelcontextprotocol/server-filesystem
。 点击“+”添加到服务器列表。
在弹出框中编辑服务器信息,填写操作目录路径(例如 C:\Users\Administrator\Desktop\test
),点击“确定”。
启用Filesystem 工具服务
启用 Filesystem 服务后;在聊天框中输入指令,例如:“请问C:\Users\Administrator\Desktop\test目录下有几个文件,列出文件名”
例如:“请在C:\Users\Administrator\Desktop\test路径下创建一个名为‘mcp学习笔记’的txt文件”。
打开文件,你会发现已成功在C:\Users\Administrator\Desktop\test路径下创建名为‘mcp学习笔记’的txt文件。
其他更多MCP服务可查看:https://github.com/punkpeye/awesome-mcp-servers
零基础入门AI大模型
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
