Coze(扣子)工作流:保姆级拆解历史人物的一生视频工作流,首尾帧难题轻松破

目录

1. 写在开头

2. 工作流思路拆解

2.1. 流程思路

2.2. 首尾帧提示词列表和首尾帧图片列表(难点单独讲!!!)

3. 工作流实现

4. 资料领取

5. 结语

1. 写在开头

最近刷短视频,是不是总刷到那种讲历史人物一生的爆款?从李世民玄武门之变到武则天登基,短短几十秒,画面一帧帧顺得像流水,配着简洁的字幕,信息量又足又好懂。我自己就经常刷到停不下来,看那点赞量,动辄几万几十万,是真的火。

但作为创作者,每次刷到这种视频我都忍不住琢磨:这得费多少功夫啊?光是查史料、写文案就够头大了,还得画插画、做动画、拼剪辑…… 尤其那个画面衔接,前一帧和后一帧要顺得看不出破绽,光是调这个细节,估计就能劝退一大半新手。不过最近我摸索出个省事儿的硬核招儿 —— 用 Coze(扣子)直接生成这种视频,全程不用手动操作,连最让人头疼的首尾帧过渡都能给捋顺了。亲测效果是真不错:

ps:上面视频除了婴儿哭声,其余的全部由Coze一键生成。

接下来,我会拆解这个工作流的每一步,从用户输入一个名字开始,到最终剪映草稿导出,带你看懂如何用 Coze 实现历史人物一生的自动化生成。尤其会重点讲首尾帧连贯这个核心难点 —— 这步搞定了,你也能批量产出爆款视频。

2. 工作流思路拆解

2.1. 流程思路

在工作流开始之前还是带领大家来看一下整个工作流的技术流程:

上图用文字可以归纳为以下几个步骤:

  1. 用户输入历史人物名称
  2. 生成历史人物一生的文案(如ta出生于哪年、几岁做了什么),生成的文案为数组列表
  3. 进入文案数组循环在循环中基于每个文案元素生成文生图提示词
  4. 基于文生图提示词生成图片
  5. 结束文案数组循环,接收文生图提示词数组和图片数组
  6. 基于文生图提示词数组和图片数组生成文生图首尾帧提示词列表和首尾帧图片列表(难点!!!)
  7. 进入循环,遍历文生图首尾帧提示词列表和首尾帧图片列表
  8. 基于文生图首尾帧提示词生成文生视频首尾帧提示词
  9. 基于文生视频首尾帧提示词和首尾帧图片利用Coze视频生成节点生成视频
  10. 退出循环获取视频列表
  11. 基于代码对视频和前面的文案进行组装
  12. 创建剪映草稿,添加视频和字幕
  13. 导出剪映草稿
2.2. 首尾帧提示词列表和首尾帧图片列表(难点单独讲!!!)

可以看到在2.1小节中我把流程中的第六步标位了难点,这一步也是本个工作流的核心点,我们需要生成首尾帧连贯的视频,就需要生成首尾帧图片和对应的视频提示词,在第五步生成了图片列表,故将图片列表复刻一份,两个列表一个去掉第一个元素,一个去掉最后一个元素,就生成了两个对应的首尾帧数组,你看我的字可能很懵,可以看下图。

生成的图片列表如下,每张图片有个对应的编号,从图1到图4。

我们需要基于上面的图片列表生成两个首尾帧图片列表,首帧图片去掉编号4图片,尾帧图片列表去掉编号1图片

在上图中可以看到首尾帧图片列表中图片编号的对应关系,第一张图片对应到了第二张,第二张对应到第三张…依次类推,我们只要依次将首尾帧图片传递给视频制作插件就能制作出首尾帧衔接自然的视频了。首尾帧提示词同理,这里就不重复讲解了。(可能有点绕,多看几遍)

3. 工作流实现

完整的工作流示意图我放这儿了,整体看下来其实不算复杂,真正需要花点心思的就是首尾帧衔接这一步 —— 不过别担心,跟着我一步步拆解,保准你能看懂。

开始节点:这里只需要填一个参数,名叫title,说白了就是你想做的历史人物名字。我这儿举的例子是褒姒,你换成李白、秦始皇 都一样用。

**生成历史人物的一生文案(大模型):**这个节点的作用是根据开始节点历史人物的名字来生成相应文案,输出为字符串类型的数组(即视频文案列表)和单个字符串(即视频标题)。

**文生图提示词(大模型):**这个节点位于文案列表的循环中,目的是结合单个视频文案生成文生图提示词。

**图像生成:扣子的内置节点,正向提示词为文生图提示词(大模型)**的输出。

等循环跑完,得把文生图提示词节点生成的所有提示词,还有图像生成节点输出的所有图片都收集起来存入数组。

接下来是首尾帧图片提示词这个代码节点,它的作用呢,就是把前面循环收集到的提示词列表和图片列表,生成对应的首尾帧图片列表和首尾帧提示词列表。具体咋实现的,前面 2.2 小节我都掰开揉碎讲得明明白白了。

具体的代码我放这儿了(别问我为什么不放源码,因为AI率…你看图理解一下然后丢豆包里面让它写出来就行):

**首尾帧连贯动态提示词(大模型):**这个节点会根据前面生成的文生图首尾帧提示词列表,来生成做视频用的动态提示词。

**视频生成(Coze内置视频生成插件):**用 Coze 自带的视频生成插件时,只要把首尾帧的图片和刚才生成的视频提示词传进去就行。

**代码组装:**这段代码就像个贴心的自动剪辑师。它会先核对一下文案和视频的数量对不对 —— 文案得比视频多 1 个,因为最后一帧视频要对应最后一句文案。接着给每个视频片段定好 5 秒的时长,再把字幕按时间轴排妥当,普通字幕在每个片段开头 2 秒冒出来,总标题则全程都能看到,最后把这些信息打包成 JSON 格式。

最后一步,就是把前面生成的所有素材一股脑塞进剪映小助手:

上述就是整个工作流的主要流程,整个工作流涉及到几十个节点,流程相对复杂,动手能力强的读者可以根据以上思路研究一下。如果想直接获取工作流,可以加入社群后我拉你进Coze空间直接学习使用。

关于AI大模型技术储备

学好 AI大模型 不论是就业还是在工作技能提升上都不错,但要学会 AI大模型 还是要有一个学习规划。最后大家分享一份全套的 AI大模型 学习资料,给那些想学习 AI大模型 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AI大模型学习资料和安装工具,包含Agent行业报告、精品AI大模型学习书籍手册、视频教程、最新实战学习等录播视频,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值