★
我们平时使用的ChatGPT、kimi、豆包等Ai对话工具,其服务器都是部署在各家公司的机房里,如果我们有一些隐私数据发到对话中,很难保证信息是否安全等问题,如何在保证数据安全的情况下,又可以使用大语言模型,Ollma(哦拉玛)可以告诉你答案!
”
这是一个保姆级的教程,从下载到成功运行Qwen2.5大模型,更适合没有玩过Ollma的小白宝宝哦~
1. Ollma 是什么?
★
一句话介绍:一个可以让你在本地启动并运行大型语言模型的工具!
”
Ollma是一个开源的大模型服务工具,他可以让你在一行代码不写的情况下,在本地通过一条命令即可运行大模型。
Ollma会根据电脑配置,自动选择用CPU还是GPU运行,如果你的电脑没有GPU,会直接使用CPU进行运行(可能有点慢)
2. 安装教程
Ollma官网:[https://ollama.com/]
模型仓库:[https://ollama.com/library]
2.1 首先去官网下载
从主页点击下载,直接跳转到了当前系统所兼容的下载界面,点击download,一键下载
2.2 下载好之后安装
博主的电脑是Mac,下载好之后,直接把压缩包解压,然后移动到应用程序中即可,其他操作系统,参考这个文档:
[Windows 下的安装与配置](https://datawhalechina.github.io/handy-ollama/#/C2/2.%20Ollama%20%E5%9C%A8%20Windows%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)``[Linux 安装Ollma ](https://datawhalechina.github.io/handy-ollama/#/C2/3.%20Ollama%20%E5%9C%A8%20Linux%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)``[Docker 安装 Ollma](https://datawhalechina.github.io/handy-ollama/#/C2/4.%20Ollama%20%E5%9C%A8%20Docker%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)
下载好之后,打开,当这个帅气的小羊驼显示在你的任务栏中的时候,说明已经启动成功了!
image.png
2.3 测试一下
打开命令行,输入ollama -h
看到以下界面,就可以进行下一步,操作了~
3. 导入开源Qwen 2.5 - 0.5B 大模型
3.1 去模型仓库搜索模型
我们在上面提到的Ollma模型仓库中找到最新的千问大模型
点进去,界面如下:
3.2 加载模型
将上面的命令复制到命令行,回车执行!等待下载
等进度100%了,即可使用模型
3.3 使用模型
在命令行中,即可开启与千问大模型的对话,看到这里,是不是感觉很简单,快去点个赞!
输入/bye
方可结束对话。
都看到这里了,点个赞再走吧!码字实属不易呀。
4. 部署webUI可视化对话
本文使用FastAPI 部署Ollma可视化页面,简单4步即可
1、克隆仓库
git clone https://github.com/AXYZdong/handy-ollama
克隆完成进入目标目录:
cd handy-ollama/notebook/C6/fastapi_chat_app
2、安装依赖
pip install -r requirements.txt
pip install 'uvicorn[standard]'
3、修改app.py
代码
输入vim websocket_handler.py
命令(确保你在fastapi_chat_app目录下先)更改model代码
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import ollama
from fastapi import WebSocket
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
user_input = await websocket.receive_text()
stream = ollama.chat(
model='qwen2.5:0.5b',
messages=[{'role': 'user', 'content': user_input}],
stream=True
)
try:
for chunk in stream:
model_output = chunk['message']['content']
await websocket.send_text(model_output)
except Exception as e:
await websocket.send_text(f"Error: {e}")
finally:
await websocket.close()
4、运行模型
输入命令:
uvicorn app:app --reload``
即可开始对话:
零基础入门AI大模型
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
