链表基本运算详解:查找、插入、删除及特殊链表

在上一篇文章中,我们介绍了线性表的基本概念和顺序存储。本文将深入探讨单链表的基本运算,并介绍循环链表和双向链表这两种特殊的链表结构,帮助读者全面掌握链表的操作技巧。

1.单链表基本运算

单链表是最基础的动态数据结构,其基本运算包括查找、插入、删除等操作。理解这些基本运算的原理和实现,是掌握更复杂数据结构的关键。

链表的查找操作

链表的查找分为按序号查找和按值查找两种方式,它们是其他操作的基础。

按序号查找

按序号查找是根据元素在链表中的位置来定位元素。

// 在带头节点的单链表head中查找第i个节点,返回节点的存储位置
LinkList *Get(LinkList *head, int i) {
    int j = 0;
    LinkList *p = head;  // 从头节点开始扫描
    
    while ((p->next != NULL) && (j < i)) {
        p = p->next;     // 扫描下一个节点
        j++;             // 已扫描节点计数器
    }
    
    if (i == j)
        return p;        // 找到了第i个节点
    else
        return NULL;     // 未找到,i≤0或i>n
}

按值查找

按值查找是根据数据元素的值来定位节点。

// 在带头节点的单链表head中查找节点值等于key的节点
// 若找到则返回节点的位置p;否则返回NULL
LinkList *Locate(LinkList *head, DataType key) {
    LinkList *p = head->next;  // 从首元节点开始比较
    
    while ((p != NULL) && (p->data != key)) {
        p = p->next;           // 没找到则继续循环
    }
    
    return p;  // 找到返回节点指针,否则返回NULL
}

时间复杂度分析:两种查找操作的时间复杂度都是O(n),因为在最坏情况下需要遍历整个链表。

链表的插入操作

链表插入操作的优势在于不需要移动其他元素,只需要修改指针即可。

在指定节点后插入

void InsertAfter(LinkList *p, DataType x) {
    LinkList *s = (LinkList*)malloc(sizeof(LinkList));  // 生成新节点
    s->data = x;
    s->next = p->next;  // 新节点指向原后继节点
    p->next = s;        // 原节点指向新节点
}

时间复杂度:O(1),因为只需要修改两个指针。

在指定节点前插入

在节点前插入相对复杂,需要先找到前驱节点。

// 在带头节点的单链表head中,将值为x的新节点插入到节点p之前
void InsertBefore(LinkList *head, LinkList *p, DataType x) {
    LinkList *s = (LinkList*)malloc(sizeof(LinkList));  // 生成新节点
    s->data = x;
    
    LinkList *q = head;  // 从头指针开始
    while (q->next != p) {
        q = q->next;     // 查找p的前驱节点q
    }
    
    s->next = p;         // 新节点指向p
    q->next = s;         // 前驱节点指向新节点
}

实现线性表的插入运算

结合查找和插入操作,实现标准的线性表插入运算。

void Insert(LinkList *L, DataType x, int i) {
    LinkList *p = Get(L, i - 1);  // 找到第i-1个节点
    
    if (p == NULL) {
        printf("插入位置不合法\n");  // i<1或i>(n+1)
    } else {
        InsertAfter(p, x);           // 将值为x的新节点插入到p之后
    }
}

链表的删除操作

删除操作需要修改前驱节点的指针,并释放被删节点的内存。

删除指定节点

void DeleteNode(LinkList *head, LinkList *p) {
    LinkList *q = head;  // 查找p的前驱节点q
    
    while (q->next != p) {
        q = q->next;
    }
    
    q->next = p->next;   // 删除节点p
    free(p);             // 释放节点p的内存
}

实现线性表的删除运算

void Delete(LinkList *L, int i) {
    LinkList *p = Get(L, i - 1);  // 找到第i-1个节点
    
    if ((p != NULL) && (p->next != NULL)) {
        LinkList *r = p->next;    // r为节点p的后继
        p->next = r->next;        // 将节点r从链表上摘下
        free(r);                  // 释放节点r
    } else {
        printf("删除位置不合法\n");  // i<1或i>n
    }
}

链表合并算法

将两个递增有序的单链表合并为一个递增有序的单链表,要求不另外开辟存储空间。

LinkList *Union(LinkList *la, LinkList *lb) {
    LinkList *p = la->next, *q = lb->next;
    LinkList *r = la;  // r为p的直接前驱
    
    while ((p != NULL) && (q != NULL)) {
        if (p->data > q->data) {
            // 将q节点插入到r之后
            LinkList *u = q->next;
            r->next = q;
            r = q;
            q->next = p;
            q = u;
        } else {
            // p节点保持原位
            r = p;
            p = p->next;
        }
    }
    
    if (q != NULL) {
        r->next = q;  // 将剩余节点连接到结果链表
    }
    
    free(lb);  // 释放lb的头节点
    return la;
}

算法思想:采用归并思想,逐一比较两个链表的节点值,将较小的节点插入到结果链表中。

2.循环链表

循环链表是一种特殊的单链表,其最后一个节点的指针不是NULL,而是指向头节点,形成一个环形结构。

循环链表的特点

  • 无需NULL判断:遍历时不需要判断是否到达链表末尾
  • 任意起点:可以从任意节点开始遍历整个链表
  • 适合循环应用:如约瑟夫问题、循环队列等

循环链表的插入操作

void Insert(LinkList *head, DataType x, int i) {
    LinkList *s = (LinkList*)malloc(sizeof(LinkList));
    s->data = x;  // 生成值为x的新节点
    
    LinkList *p = head;
    int j = 0;
    
    // 查找第i个位置
    while ((p->next != head) && (j < i)) {
        p = p->next;
        j++;
    }
    
    if (i == j) {
        s->next = p->next;
        p->next = s;  // 执行插入操作
    } else {
        printf("插入位置不合法\n");
        free(s);
    }
}

关键差异:循环条件从p->next != NULL改为p->next != head

3.双向链表

双向链表的每个节点包含两个指针域:一个指向直接前驱,另一个指向直接后继。

双向链表的结构定义

typedef char DataType;

typedef struct dnode {
    DataType data;           // 数据域
    struct dnode *prior;     // 指向前驱节点的指针
    struct dnode *next;      // 指向后继节点的指针
} DLinkList;

双向链表的优势

  1. 双向遍历:可以从任意节点向前或向后遍历
  2. 删除效率高:删除指定节点时无需查找前驱节点
  3. 插入灵活:可以方便地在任意位置插入节点

双向链表的基本操作

删除节点

void DeleteNode(DLinkList *p) {
    if (p->prior != NULL) {
        p->prior->next = p->next;  // 修改前驱节点的后继指针
    }
    if (p->next != NULL) {
        p->next->prior = p->prior; // 修改后继节点的前驱指针
    }
    free(p);  // 释放节点内存
}

在指定节点前插入

void InsertBefore(DLinkList *p, DataType x) {
    DLinkList *s = (DLinkList*)malloc(sizeof(DLinkList));
    s->data = x;
    
    s->prior = p->prior;     // 新节点的前驱指向p的前驱
    s->next = p;             // 新节点的后继指向p
    
    if (p->prior != NULL) {
        p->prior->next = s;  // 修改p前驱的后继指针
    }
    p->prior = s;            // 修改p的前驱指针
}

时间复杂度:双向链表的插入和删除操作都是O(1),因为不需要查找前驱节点。

4.存储密度分析

存储密度是衡量数据结构空间效率的重要指标:

存储密度 = 节点数据本身占用存储量 / 节点结构占用存储量

不同链表结构的存储密度对比

假设数据域占用4字节,指针域占用8字节:

  • 单链表:存储密度 = 4/(4+8) = 1/3 ≈ 0.33
  • 双向链表:存储密度 = 4/(4+8+8) = 1/5 = 0.2
  • 数组:存储密度 = 4/4 = 1.0

空间效率分析

  1. 数组:存储密度最高,但空间固定分配
  2. 单链表:存储密度适中,空间动态分配
  3. 双向链表:存储密度较低,但操作效率高

5.链表运算复杂度总结

操作单链表双向链表循环链表
查找O(n)O(n)O(n)
插入(已知位置)O(1)O(1)O(1)
插入(已知值)O(n)O(n)O(n)
删除(已知节点)O(n)O(1)O(n)
删除(已知位置)O(n)O(n)O(n)

6.应用场景选择

单链表适用场景

  • 数据量不大,主要进行顺序访问
  • 内存空间有限,需要较高存储密度
  • 实现简单的动态数据结构

双向链表适用场景

  • 需要频繁的双向遍历
  • 需要高效的节点删除操作
  • 实现复杂的数据结构(如LRU缓存)

循环链表适用场景

  • 循环调度算法
  • 约瑟夫环问题
  • 循环缓冲区实现

7.总结

链表作为基础的动态数据结构,提供了灵活的内存管理和高效的插入删除操作。掌握链表的各种操作技巧,不仅有助于理解数据结构的本质,更为学习树、图等高级数据结构奠定了坚实基础。

在实际应用中,应根据具体需求选择合适的链表类型:追求存储效率时选择单链表,需要双向操作时选择双向链表,处理循环问题时使用循环链表。理解每种结构的特点和适用场景,才能在编程实践中做出最佳选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值