在上一篇文章中,我们介绍了线性表的基本概念和顺序存储。本文将深入探讨单链表的基本运算,并介绍循环链表和双向链表这两种特殊的链表结构,帮助读者全面掌握链表的操作技巧。
文章目录
1.单链表基本运算
单链表是最基础的动态数据结构,其基本运算包括查找、插入、删除等操作。理解这些基本运算的原理和实现,是掌握更复杂数据结构的关键。
链表的查找操作
链表的查找分为按序号查找和按值查找两种方式,它们是其他操作的基础。
按序号查找
按序号查找是根据元素在链表中的位置来定位元素。
// 在带头节点的单链表head中查找第i个节点,返回节点的存储位置
LinkList *Get(LinkList *head, int i) {
int j = 0;
LinkList *p = head; // 从头节点开始扫描
while ((p->next != NULL) && (j < i)) {
p = p->next; // 扫描下一个节点
j++; // 已扫描节点计数器
}
if (i == j)
return p; // 找到了第i个节点
else
return NULL; // 未找到,i≤0或i>n
}
按值查找
按值查找是根据数据元素的值来定位节点。
// 在带头节点的单链表head中查找节点值等于key的节点
// 若找到则返回节点的位置p;否则返回NULL
LinkList *Locate(LinkList *head, DataType key) {
LinkList *p = head->next; // 从首元节点开始比较
while ((p != NULL) && (p->data != key)) {
p = p->next; // 没找到则继续循环
}
return p; // 找到返回节点指针,否则返回NULL
}
时间复杂度分析:两种查找操作的时间复杂度都是O(n),因为在最坏情况下需要遍历整个链表。
链表的插入操作
链表插入操作的优势在于不需要移动其他元素,只需要修改指针即可。
在指定节点后插入
void InsertAfter(LinkList *p, DataType x) {
LinkList *s = (LinkList*)malloc(sizeof(LinkList)); // 生成新节点
s->data = x;
s->next = p->next; // 新节点指向原后继节点
p->next = s; // 原节点指向新节点
}
时间复杂度:O(1),因为只需要修改两个指针。
在指定节点前插入
在节点前插入相对复杂,需要先找到前驱节点。
// 在带头节点的单链表head中,将值为x的新节点插入到节点p之前
void InsertBefore(LinkList *head, LinkList *p, DataType x) {
LinkList *s = (LinkList*)malloc(sizeof(LinkList)); // 生成新节点
s->data = x;
LinkList *q = head; // 从头指针开始
while (q->next != p) {
q = q->next; // 查找p的前驱节点q
}
s->next = p; // 新节点指向p
q->next = s; // 前驱节点指向新节点
}
实现线性表的插入运算
结合查找和插入操作,实现标准的线性表插入运算。
void Insert(LinkList *L, DataType x, int i) {
LinkList *p = Get(L, i - 1); // 找到第i-1个节点
if (p == NULL) {
printf("插入位置不合法\n"); // i<1或i>(n+1)
} else {
InsertAfter(p, x); // 将值为x的新节点插入到p之后
}
}
链表的删除操作
删除操作需要修改前驱节点的指针,并释放被删节点的内存。
删除指定节点
void DeleteNode(LinkList *head, LinkList *p) {
LinkList *q = head; // 查找p的前驱节点q
while (q->next != p) {
q = q->next;
}
q->next = p->next; // 删除节点p
free(p); // 释放节点p的内存
}
实现线性表的删除运算
void Delete(LinkList *L, int i) {
LinkList *p = Get(L, i - 1); // 找到第i-1个节点
if ((p != NULL) && (p->next != NULL)) {
LinkList *r = p->next; // r为节点p的后继
p->next = r->next; // 将节点r从链表上摘下
free(r); // 释放节点r
} else {
printf("删除位置不合法\n"); // i<1或i>n
}
}
链表合并算法
将两个递增有序的单链表合并为一个递增有序的单链表,要求不另外开辟存储空间。
LinkList *Union(LinkList *la, LinkList *lb) {
LinkList *p = la->next, *q = lb->next;
LinkList *r = la; // r为p的直接前驱
while ((p != NULL) && (q != NULL)) {
if (p->data > q->data) {
// 将q节点插入到r之后
LinkList *u = q->next;
r->next = q;
r = q;
q->next = p;
q = u;
} else {
// p节点保持原位
r = p;
p = p->next;
}
}
if (q != NULL) {
r->next = q; // 将剩余节点连接到结果链表
}
free(lb); // 释放lb的头节点
return la;
}
算法思想:采用归并思想,逐一比较两个链表的节点值,将较小的节点插入到结果链表中。
2.循环链表
循环链表是一种特殊的单链表,其最后一个节点的指针不是NULL,而是指向头节点,形成一个环形结构。
循环链表的特点
- 无需NULL判断:遍历时不需要判断是否到达链表末尾
- 任意起点:可以从任意节点开始遍历整个链表
- 适合循环应用:如约瑟夫问题、循环队列等
循环链表的插入操作
void Insert(LinkList *head, DataType x, int i) {
LinkList *s = (LinkList*)malloc(sizeof(LinkList));
s->data = x; // 生成值为x的新节点
LinkList *p = head;
int j = 0;
// 查找第i个位置
while ((p->next != head) && (j < i)) {
p = p->next;
j++;
}
if (i == j) {
s->next = p->next;
p->next = s; // 执行插入操作
} else {
printf("插入位置不合法\n");
free(s);
}
}
关键差异:循环条件从p->next != NULL
改为p->next != head
。
3.双向链表
双向链表的每个节点包含两个指针域:一个指向直接前驱,另一个指向直接后继。
双向链表的结构定义
typedef char DataType;
typedef struct dnode {
DataType data; // 数据域
struct dnode *prior; // 指向前驱节点的指针
struct dnode *next; // 指向后继节点的指针
} DLinkList;
双向链表的优势
- 双向遍历:可以从任意节点向前或向后遍历
- 删除效率高:删除指定节点时无需查找前驱节点
- 插入灵活:可以方便地在任意位置插入节点
双向链表的基本操作
删除节点
void DeleteNode(DLinkList *p) {
if (p->prior != NULL) {
p->prior->next = p->next; // 修改前驱节点的后继指针
}
if (p->next != NULL) {
p->next->prior = p->prior; // 修改后继节点的前驱指针
}
free(p); // 释放节点内存
}
在指定节点前插入
void InsertBefore(DLinkList *p, DataType x) {
DLinkList *s = (DLinkList*)malloc(sizeof(DLinkList));
s->data = x;
s->prior = p->prior; // 新节点的前驱指向p的前驱
s->next = p; // 新节点的后继指向p
if (p->prior != NULL) {
p->prior->next = s; // 修改p前驱的后继指针
}
p->prior = s; // 修改p的前驱指针
}
时间复杂度:双向链表的插入和删除操作都是O(1),因为不需要查找前驱节点。
4.存储密度分析
存储密度是衡量数据结构空间效率的重要指标:
存储密度 = 节点数据本身占用存储量 / 节点结构占用存储量
不同链表结构的存储密度对比
假设数据域占用4字节,指针域占用8字节:
- 单链表:存储密度 = 4/(4+8) = 1/3 ≈ 0.33
- 双向链表:存储密度 = 4/(4+8+8) = 1/5 = 0.2
- 数组:存储密度 = 4/4 = 1.0
空间效率分析
- 数组:存储密度最高,但空间固定分配
- 单链表:存储密度适中,空间动态分配
- 双向链表:存储密度较低,但操作效率高
5.链表运算复杂度总结
操作 | 单链表 | 双向链表 | 循环链表 |
---|---|---|---|
查找 | O(n) | O(n) | O(n) |
插入(已知位置) | O(1) | O(1) | O(1) |
插入(已知值) | O(n) | O(n) | O(n) |
删除(已知节点) | O(n) | O(1) | O(n) |
删除(已知位置) | O(n) | O(n) | O(n) |
6.应用场景选择
单链表适用场景
- 数据量不大,主要进行顺序访问
- 内存空间有限,需要较高存储密度
- 实现简单的动态数据结构
双向链表适用场景
- 需要频繁的双向遍历
- 需要高效的节点删除操作
- 实现复杂的数据结构(如LRU缓存)
循环链表适用场景
- 循环调度算法
- 约瑟夫环问题
- 循环缓冲区实现
7.总结
链表作为基础的动态数据结构,提供了灵活的内存管理和高效的插入删除操作。掌握链表的各种操作技巧,不仅有助于理解数据结构的本质,更为学习树、图等高级数据结构奠定了坚实基础。
在实际应用中,应根据具体需求选择合适的链表类型:追求存储效率时选择单链表,需要双向操作时选择双向链表,处理循环问题时使用循环链表。理解每种结构的特点和适用场景,才能在编程实践中做出最佳选择。