数据结构——栈

目录

一、栈的定义与特性

(1)定义

(2)特性

二、栈的基本操作

三、顺序栈(栈的顺序存储结构)

1、顺序栈的类型定义

2、顺序栈基本操作的实现

四、栈的应用

一、栈的定义与特性

(1)定义

栈是一种插入操作与删除操作限制在同一端进行的特殊线性表

栈顶(top):进行插入与删除操作的一端

栈底(bottom):另一端

空栈:不含任意元素的栈

(2)特性

后进先出(LIFO—Last In First Out)    

先进后出(FILO—First In Last Out)

二、栈的基本操作

设栈抽象数据类型为Stack,常用的基本操作有:

操作函数初始条件操作结果
初始化操作InitStack(&S)栈 S 不存在构造一个初始空栈 S
销毁操作destroyStack(&S)栈 S 已存在将栈 S 销毁,释放栈的存储空间
判空操作stackIsEmpty(S)栈 S 已存在判断栈 S 是否为空;若栈为空则返回TURE, 否则返回 FALSE
清空操作clearStack(&S)栈 S 已存在将栈 S 清空,变为空栈
入栈操作Push(&S, e)栈 S 已存在,e 为给定数据元素值将给定值为 e 的元素入栈,即将 e 在栈 S 的栈顶端插入
出栈操作Pop(&S, &e)栈 S 已存在且非空将栈 S 的栈顶元素出栈,即将栈顶元素删除,并通过 参数 e 返回出栈元素的值
取栈顶操作getTop(S, &e)栈 S 已存在且非空取栈 S 的栈顶元素的值,将其值通过参数 e 返回
求栈长操作stackLength(S)栈 S 已存在求栈 S 的长度,即栈中的元素个数;当栈 S非空时, 函数返回该栈的长度;而当栈 S为空时则返回 0
遍历操作stackTraverse(S, visit())

栈 S 已存在;

visit()为元素的访问函数

依照从栈底到栈顶的顺序依次访问栈 S 的元素,且每个元素只被访问一次

三、顺序栈(栈的顺序存储结构)

1、顺序栈的类型定义

#define StackSpaceIncr 20                    

struct{      

        SElemType *base;

         int top;                              

         int stackSize;            

}SqStack ; 

2、顺序栈基本操作的实现

(1)初始化操作  InitSqStack(&S, InitSize)

Status InitSqStack(SqStack &S, int InitSize)
{

     S.base = (SElemType *)malloc(InitSize * sizeof(SElemType) );

     if(!S.base) return OVERFLOW;    

     S.stackSize = InitSize;

     S.top = 0;

     return OK;

}

(2)判空操作、清空操作与求栈长操作

Status stackIsEmpty(SqStack S)
{

      if( !S.top ) return TRUE;

      else return FALSE;

}

void clearStack(SqStack &S)
{

      S.top=0;

}

int stackLength(SqStack S)
{

      return S.top;

}

(3)入栈操作 Push(&S, e)

Status Push(SqStack &S, SElemType e)
{
    SElemType *newBase;
    if( S.top==S.stackSize )
    {   
        newBase=(SElemType*)realloc( S.base,    

        (S.stackSize+StackSpaceIncr)* sizeof(SElemType) );

         if(!newBase) return OVERFLOW;  

         S.base=newBase;

         S.stackSize+=StackSpaceIncr;         

     }

     S.base[S.top] = e;               

     S.top++;                            

     return OK;

}

(4)出栈操作 Pop(&S, &e)

Status Pop(SqStack &S, SElemType &e)
{

      if( !S.top ) return ERROR;    

      S.top-- ;    

      e=S.base[S.top];                       

      return OK;

}

四、栈的应用

1.简单的行编辑程序  

2.迷宫问题